首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 487 毫秒
1.
The teleost fish nonapeptides, arginine vasotocin (AVT) and isotocin (IT), have been implicated in the regulation of social behavior. These peptides are expected to be involved in acute and transient changes in social context, in order to be efficient in modulating the expression of social behavior according to changes in the social environment. Here we tested the hypothesis that short-term social interactions are related to changes in the level of both nonapeptides across different brain regions. For this purpose we exposed male zebrafish to two types of social interactions: (1) real opponent interactions, from which a Winner and a Loser emerged; and (2) mirror-elicited interactions, that produced individuals that did not experience a change in social status despite expressing similar levels of aggressive behavior to those of participants in real-opponent fights. Non-interacting individuals were used as a reference group. Each social phenotype (i.e. Winners, Losers, Mirror-fighters) presented a specific brain profile of nonapeptides when compared to the reference group. Moreover, the comparison between the different social phenotypes allowed to address the specific aspects of the interaction (e.g. assessment of opponent aggressive behavior vs. self-assessment of expressed aggressive behavior) that are linked with neuropeptide responses. Overall, agonistic interactions seem to be more associated with the changes in brain AVT than IT, which highlights the preferential role of AVT in the regulation of aggressive behavior already described for other species.  相似文献   

2.
Arginine vasotocin (AVT) and isotocin (IT) levels in plasma and pituitary, and melatonin (MEL) levels in plasma were determined in gilthead sea bream (Sparus auratus) subjected to two different types of stress: i) high density (HD) and ii) food deprivation (NF: non-fed). Fishes were randomly assigned to one of 4 treatments that lasted for 14 days: 1) fed fish under normal low density (ND, 4 kg m(-3)); 2) non-fed (NF) fish under ND; 3) fed fish under high density (HD, 70 kg m(-3)); and 4) non-fed fish under HD. Ten fish from each tank were anaesthetized, weighed and plasma and pituitary samples were taken. Plasma and pituitary AVT and IT content were determined by HPLC, while plasma MEL was assayed by RIA. Plasma AVT and IT values were enhanced in all fish kept at high density. The response of AVT was much stronger than that of IT. The highest pituitary AVT and IT levels were shown in NF fish kept at normal density. The significantly higher plasma MEL levels were measured in fed fish kept at HD. These results suggest a role of AVT, IT and MEL in response of sea bream to a common stress factor, high density. Although food deprivation does not influence AVT and IT plasma levels, it seems to affect hypothalamic synthesis of nonapeptides. Further studies are required to elucidate the complex role of AVT, IT and MEL in the sea bream's response to different stress stimuli.  相似文献   

3.
Arginine vasotocin (AVT) and isotocin (IT) levels in plasma and pituitary, and melatonin (MEL) levels in plasma were determined in gilthead sea bream (Sparus auratus) subjected to two different types of stress: i) high density (HD) and ii) food deprivation (NF: non-fed). Fishes were randomly assigned to one of 4 treatments that lasted for 14 days: 1) fed fish under normal low density (ND, 4 kg m(-3)); 2) non-fed (NF) fish under ND; 3) fed fish under high density (HD, 70 kg m(-3)); and 4) non-fed fish under HD. Ten fish from each tank were anaesthetized, weighed and plasma and pituitary samples were taken. Plasma and pituitary AVT and IT content were determined by HPLC, while plasma MEL was assayed by RIA. Plasma AVT and IT values were enhanced in all fish kept at high density. The response of AVT was much stronger than that of IT. The highest pituitary AVT and IT levels were shown in NF fish kept at normal density. The significantly higher plasma MEL levels were measured in fed fish kept at HD. These results suggest a role of AVT, IT and MEL in response of sea bream to a common stress factor, high density. Although food deprivation does not influence AVT and IT plasma levels, it seems to affect hypothalamic synthesis of nonapeptides. Further studies are required to elucidate the complex role of AVT, IT and MEL in the sea bream's response to different stress stimuli.  相似文献   

4.
Summary The distribution of salmon gonadotrophin-releasing hormone (sGnRH) was studied in the brain and pituitary of two-year-old immature sea bass (Dicentrarchus labrax) by means of an enzymoimmunoassay (EIA) for sGnRH and immunocytochemistry. The EIA for sGnRH is a competitive assay using a tracer made of sGnRH coupled to acetylcholinesterase from an electric eel. The separation of free and bound tracer is achieved by coating the plates with mouse anti-rabbit IgG monoclonal antibodies. Displacement curves generated by sGnRH and extracts from pituitary and different brain regions showed a good parallelism allowing the assay to be used for sGnRH measurements in this species. Although all parts of the brain contained measurable levels of sGnRH, the highest concentrations were found in the pituitary, the olfactory bulbs and the telencephalon. These data were confirmed by immunocytochemistry. Cell bodies were found in the olfactory bulbs, ventral telencephalon, preoptic region and mediobasal hypothalamus. Immunoreactive fibers could be observed in all parts of the brain including the optic tectum, the cerebellum (corpus and valvula), the vagal lobe, the medulla oblongata and the rostral spinal cord. In most cases, these fibers do not form well defined bundles; however, there was clearly a continuum of immunoreactive fibers, extending from the olfactory bulbs to the pituitary, and along which all the cell bodies described above were located. In the ventral telencephalon and the preoptic region, clear pictures of varicose positive fibers contacting immunoreactive perikarya could be observed. These data indicate that sGnRH is most likely an endogenous peptide in the brain of the sea bass, although the presence of other forms of GnRH cannot be excluded at this point. This study also demonstrates that the general organization of the GnRH systems in the sea bass is highly similar to what has been described in most freshwater teleost species, and provides basis for further studies on the neuroendocrine control of gonadotrophin release in this commercially important species.  相似文献   

5.
To clarify the possible function of gonadotropin-releasing hormone (GnRH) in the brain of a pleuronectiform fish, the barfin flounder Verasper moseri, the distribution of three forms of GnRH in various areas of the brain was examined by radioimmunoassay, and the localization of GnRH-immunoreactive (ir) cell bodies and fibers in the brain and pituitary was determined by immunocytochemistry. The dominant form in the pituitary was seabream GnRH (sbGnRH), levels of which were much higher than those of salmon GnRH (sGnRH) and chicken GnRH-II (cGnRH-II). In contrast, sbGnRH levels were extremely low in all other brain areas examined. Levels of sGnRH and cGnRH-II were high in the anterior and posterior part of the brain, respectively. sbGnRH-ir cell bodies were located in the preoptic area, whereas sbGnRH-ir fibers were localized mainly in the preoptic area-hypothalamus-pituitary and formed a distinctive bundle of axons projecting to the pituitary. sGnRH-ir cell bodies were located in the ventromedial part of the rostral olfactory bulbs and in the terminal nerve ganglion (the transitional area between the olfactory bulb and the telencephalon). cGnRH-II-ir cell bodies were localized to the midbrain tegmentum. sGnRH-ir and cGnRH-II-ir fibers were observed throughout the brain except in the pituitary gland. These results indicate that sbGnRH is responsible for the neural control of the reproductive endocrinology of the barfin flounder (hypothalamo-hypophysial system), and that sGnRH and cGnRH-II function as neurotransmitters or neuromodulators in the brain.  相似文献   

6.
The nonapeptides isotocin (IT) and arginine vasotocin (AVT), along with their mammalian homologs oxytocin and arginine vasopressin, are well known regulators of social behaviors across vertebrate taxa. However, little is known about their involvement in paternal care. Here, we measured the effect of an IT and an AVT V1a receptor antagonist on paternal behaviors in the primarily paternal teleost Amphiprion ocellaris. We also measured the effect of the IT receptor antagonist on aggression in dyadic contests between two non-reproductive fish to assess specificity of the effect on paternal behaviors. Individual differences in levels of paternal behaviors (nips, fanning the eggs, and proportion of the time in the nest) were consistent across spawning cycles when no treatments were administered. The IT receptor antagonist severely reduced paternal behaviors but had no effect on aggression, whereas the AVT V1a receptor antagonist increased paternal behaviors. These results support the idea that IT signaling is crucial for the expression of paternal behavior in A. ocellaris. Based on a previous study showing that the AVT V1a antagonist decreases aggression in dyadic contests, we hypothesize that the antagonist enhances paternal behavior indirectly by reducing vigilance and aggression, thereby alleviating effort directed towards other competing behaviors and allowing for the increased expression of paternal behaviors.  相似文献   

7.
Summary The organization of Gn-RH systems in the brain of teleosts has been investigated previously by immunohistochemistry using antibodies against the mammalian decapeptide which differs from the teleostean factor. Here, we report the distribution of immunoreactive Gn-RH in the brain of goldfish using antibodies against synthetic teleost peptide.Immunoreactive structures are found along a column extending from the rostral olfactory bulbs to the pituitary stalk. Cell bodies are observed within the olfactory nerves and bulbs, along the ventromedial telencephalon, the ventrolateral preoptic area and the latero-basal hypothalamus. Large perikarya are detected in the dorsal midbrain tegmentum, immediately caudal to the posterior commissure. A prominent pathway was traced from the cells located in the olfactory nerves through the medial olfactory tract and along all the perikarya described above to the pituitary stalk. In the pituitary, projections are restricted to the proximal pars distalis. A second immunoreactive pathway ascends more dorsally in the telencephalon and arches to the periventricular regions of the diencephalon. Part of this pathway forms a periventricular network in the dorsal and posterior hypothalamus, whereas other projections continue caudally to the medulla oblongata and the spinal cord. Lesions of the ventral preoptic area demonstrate that most of the fibers detected in the pituitary originate from the preoptic region.  相似文献   

8.
A quantitative comparison was made of both relative brain size (encephalization) and the relative development of five brain area of pelagic sharks and teleosts. Two integration areas (the telencephalon and the corpus cerebellum) and three sensory brain areas (the olfactory bulbs, optic tectum and octavolateralis area, which receive primary projections from the olfactory epithelium, eye and octavolateralis senses, respectively), in four species of pelagic shark and six species of pelagic teleost were investigated. The relative proportions of the three sensory brain areas were assessed as a proportion of the total 'sensory brain', while the two integration areas were assessed relative to the sensory brain. The allometric analysis of relative brain size revealed that pelagic sharks had larger brains than pelagic teleosts. The volume of the telencephalon was significantly larger in the sharks, while the corpus cerebellum was also larger and more heavily foliated in these animals. There were also significant differences in the relative development of the sensory brain areas between the two groups, with the sharks having larger olfactory bulbs and octavolateralis areas, whilst the teleosts had larger optic tecta. Cluster analysis performed on the sensory brain areas data confirmed the differences in the composition of the sensory brain in sharks and teleosts and indicated that these two groups of pelagic fishes had evolved different sensory strategies to cope with the demands of life in the open ocean.  相似文献   

9.
A cytoarchitectonic analysis of the telencephalon of the sea bass Dicentrarchus labrax, based on cresyl violet-stained serial transverse sections, is presented. Rostrally, the brain of the sea bass is occupied by sessile olfactory bulbs coupled to telencephalic hemispheres. The olfactory bulbs comprise an olfactory nerve fiber layer, a glomerular layer, an external cellular layer, a secondary olfactory fiber layer, and an internal cellular layer. Large terminal nerve ganglion cells are evident in the caudomedial olfactory bulbs. We recognized 22 distinct telencephalic nuclei which were classified in two main areas, the ventral telencephalon and the dorsal telencephalon. The ventral telencephalon displays four periventricular cell masses: the dorsal, ventral, supracommissural, and postcommissural nuclei; and four migrated populations: the lateral, central, intermediate, and entopeduncular nuclei. In addition, a periventricular cell population resembling the lateral septal organ reported in birds is observed in the ventral telencephalon of the sea bass. The dorsal telencephalon contains 13 nuclei, which can be organized into five major zones: the medial part, dorsal part, lateral part and its ventral, dorsal, and posterior divisions, the central part, and posterior part. Based on histological criteria, two cell masses are recognized in the ventral division of the lateral part of the dorsal telencephalon. The nucleus taenia is found in the caudal area of the dorsal telencephalon, close to the ventral area. This study represents a useful tool for the precise localization of the neuroendocrine territories and for the tracing of the neuronal systems participating in the regulation of reproduction and metabolism in this species.  相似文献   

10.
The distribution of cells that express three prepro-gonadotropin-releasing hormones (GnRH), corresponding to salmon GnRH, sea bream GnRH (sbGnRH), and chicken II GnRH, was studied in the brain and pituitary of the South American cichlid fish, Cichlasoma dimerus. Although the ontogeny and distribution of GnRH neuronal systems have previously been examined immunohistochemically with antibodies and antisera against the various GnRH decapeptides, we have used antisera against various perciform GnRH-associated peptides (GAPs) and riboprobes to various perciform GnRH+GAPs. The results demonstrate that: (1) the GnRH neuronal populations in the forebrain (salmon and sea bream GAPs; sGAP and sbGAP, respectively) show an overlapping pattern along the olfactory bulbs, nucleus olfacto-retinalis, ventral telencephalon, and preoptic area; (2) projections with sGAP are mainly located in the forebrain and contribute to the pituitary innervation, with projections containing chicken GAP II being mainly distributed along the mid and hindbrain and not contributing to pituitary innervation, whereas sbGAP projections are restricted to the ventral forebrain, being the most important molecular form in relation to pituitary innervation; (3) sbGnRH (GnRH I) neurons have an olfactory origin; (4) GAP antibodies and GAP riboprobes are valuable tools for the study of various GnRH systems, by avoiding the cross-reactivity problems that occur when using GnRH antibodies and GnRH riboprobes alone.This work was supported by grants UBACYT X-217, Conicet PIP 0539/R188; NIH-HD-29186 and Fogarty International Fellowship TW00086.  相似文献   

11.
D-3-Phosphoglycerate dehydrogenase (Phgdh; EC 1.1.1.95) is the first committed enzyme of L-serine biosynthesis in the phosphorylated pathway. To determine the physiological importance of Phgdh-dependent L-serine biosynthesis in vivo, we generated Phgdh-deficient mice using targeted gene disruption in embryonic stem cells. The absence of Phgdh led to a drastic reduction of L-serine metabolites such as phosphatidyl-L-serine and sphingolipids. Phgdh null embryos have small bodies with abnormalities in selected tissues and died after days post-coitum 13.5. Striking abnormalities were evident in the central nervous system in which the Phgdh null mutation culminated in hypoplasia of the telencephalon, diencephalon, and mesencephalon; in particular, the olfactory bulbs, ganglionic eminence, and cerebellum appeared as indistinct structures. These observations demonstrate that the Phgdh-dependent phosphorylated pathway is essential for normal embryonic development, especially for brain morphogenesis.  相似文献   

12.
Although the brains of the three extant lungfish genera have been previously described, the spatial relationship between the brain and the neurocranium has never before been fully described nor quantified. Through the application of virtual microtomography (μCT) and 3D rendering software, we describe aspects of the gross anatomy of the brain and labyrinth region in the Australian lungfish, Neoceratodus forsteri and compare this to previous accounts. Unexpected characters in this specimen include short olfactory peduncles connecting the olfactory bulbs to the telencephalon, and an oblong telencephalon. Furthermore, we illustrate the endocast (the mould of the internal space of the neurocranial cavity) of Neoceratodus, also describing and quantifying the brain-endocast relationship in a lungfish for the first time. Overall, the brain of the Australian lungfish closely matches the size and shape of the endocast cavity housing it, filling more than four fifths of the total volume. The forebrain and labyrinth regions of the brain correspond very well to the endocast morphology, while the midbrain and hindbrain do not fit so closely. Our results cast light on the gross neural and endocast anatomy in lungfishes, and are likely to have particular significance for palaeoneurologists studying fossil taxa.  相似文献   

13.
Gilthead sea bream (Sparus aurata) is a euryhaline species with a capacity to cope with demands in a wide range of salinities and thus is a perfect model-fish to study osmoregulatory responses to salinity-adaptive processes and their hormonal control. Immature sea bream acclimated to different salinities, i.e. SW (38 per thousand), LSW (5 per thousand) and HSW (55 per thousand), were kept at 18 degrees C under natural photoperiod. Arginine vasotocin (AVT) and isotocin (IT) in plasma and pituitary were determined by HPLC. Plasma melatonin (Mel) was assayed by RIA. Plasma osmolality, ion concentrations (Na(+), K(+), Ca(2+), Cl(-)) and Na(+),K(+)-ATPase activity in gill were measured. A steady increase in plasma AVT, along with increasing water salinity was observed. Pituitary IT concentration in HSW-acclimated fish was significantly higher than that in LSW group. AVT/IT secretory system of sea bream does appear to be involved in the mechanism of long-term acclimation to different salinities. The distinct roles and control mechanisms of both nonapeptides are suggested. Plasma Mel was significantly higher in LSW compared with both HSW and SW groups. Data indicate that the changes in Mel level are linked to osmoregulation. Further studies are required to elucidate a complex role of AVT, IT and Mel in sea bream osmoregulation.  相似文献   

14.
It is now well established that vasotocin (AVT) and its mammalian homologue vasopressin influence various social behaviors in vertebrates, but less is known about the mechanisms through which these peptides modulate behavior. In male roughskin newts, Taricha granulosa, AVT stimulates a courtship behavior, amplectic clasping. Three general explanations for how AVT affects male courtship behavior have been considered: by enhancing a central state of sexual motivation, by affecting sensorimotor integration mechanisms in individual sensory modalities, or by influencing a nonspecific state of attention, arousal, or anxiety. AVT administration enhanced appetitive responses to visual and olfactory sexual stimuli, as would be expected if AVT affects a state of sexual motivation that affects behavioral responses to sexual stimuli regardless of the sensory modality in which they are processed. However, AVT selectively enhanced responses to female olfactory stimuli (sex pheromones), but similarly enhanced responses to female and food-related visual stimuli (worms), thus questioning the utility of such a motivational mechanism, as responses to female stimuli were not selectively enhanced in all sensory modalities. We therefore propose that exogenous AVT independently influences olfactory processes associated with orientation/attraction toward a female sex pheromone and visual processes associated with orientation/attraction toward a visual feature common to females and worms. In further experiments AVT administration failed to stimulate feeding behavior but did decrease locomotor activity. Thus, AVT does not stimulate courtship behavior in this species by enhancing the animals' general state of attention or by decreasing general anxiety, as responses to nonsexual, attractive stimuli were not uniformly enhanced, nor by stimulating general arousal, as activity levels did not increase. Rather, the data support the conclusion that AVT affects courtship by influencing specific sensorimotor processes associated with behavioral responses to individual releasing stimuli, which suggests a mechanistic framework for understanding socially motivated behavior is this species.  相似文献   

15.
16.
Investigation of the cannabinoid system in a vertebrate group phylogenetically distant from mammals might improve understanding of its physiological role. Thus, in the present study, the distribution of the cannabinoid CB1 receptor has been investigated in the brain of Xenopus laevis (anuran amphibians) by immunohistochemistry, using both light and confocal laser-scanning microscopy. Immunostained neuronal perikarya and terminals were found in the olfactory bulb, dorsal and medial pallium, striatum, and amygdala. Varicosities and nerve terminals containing CB1-like immunoreactivity were also seen in the thalamus and hypothalamus. A number of stained cells were observed in the pars distalis of the pituitary gland. Positive nerve fibers were distributed throughout mesencephalic tegmentum, and in the cerebellum immunolabeling was observed in some Purkinje and possibly Golgi cells. The confocal microscopic analysis of CB1-like and glutamic acid decarboxylase-like immunoreactivities in both the medial pallium of the telencephalon and the olfactory bulbs showed a wide codistribution of the two markers. The present results indicate that distribution of CB1 is conserved in the course of phylogeny. Furthermore, the close relationship between CB1-like and glutamic acid decarboxylase-like immunolabelings point toward the existence of a functional link between cannabinergic and GABAergic innervations also in amphibian brain.  相似文献   

17.
The distribution of three types of arginine vasotocin (AVT) receptors in the brain and pituitary of the newt Cynops pyrrhogaster, namely, the V1a-, V2-, and V3/V1b-type receptors, was studied by means of in situ hybridization and immunohistochemistry. mRNA signals and immunoreactive cells for the V1a-type receptor were observed in the telencephalon (mitral layer of the olfactory bulb, dorsal and medial pallium, lateral and medial amygdala, bed nucleus of the decussation of the fasciculus telencephali, bed nucleus of the stria terminalis), diencephalon (anterior preoptic area, magnocellular preoptic nucleus, suprachiasmatic nucleus, ventral thalamus, dorsal and ventral hypothalamic nucleus), mesencephalon (tegmentum, interpeduncular nucleus), and medulla oblongata (median reticular formation, nucleus motorius tegmenti). Cells expressing the V2-type receptor were found in the telencephalon (medial pallium, lateral and medial amygdala, bed nucleus of the decussation of the fasciculus telencephali), and mesencephalon (tegmentum trigemini and facialis). In the paraphysis (possibly the main site of cerebrospinal fluid production), only V2-type receptor mRNA signal and immunoreactivity were detected. V3/V1b-type receptor mRNA was expressed in the diencephalon (dorsal hypothalamic nucleus, nucleus tuberculi posterioris), mesencephalon (tegmentum, interpeduncular nucleus), and medulla oblongata (raphe nucleus), whereas V3/V1b-type-receptor-like immunoreactivity was scarcely detectable in the entire brain. The V3/V1b-type receptor was predominantly expressed in the anterior pituitary. V3/V1b-type receptor and proopiomelanocortin mRNAs were co-localized in the distal lobe of the pituitary. This is the first report of the distribution of three types of AVT receptor in the brain and pituitary of non-mammalian vertebrates.  相似文献   

18.
Total brain mass and the volumes of five specific brain regions in diploid and triploid Atlantic salmon Salmo salar pre‐smolts were measured using digital images. There were no significant differences (P > 0·05) in total brain mass when corrected for fork length, or the volumes of the optic tecta or hypothalamus when corrected for brain mass, between diploids and triploids. There was a significant effect (P < 0·01) of ploidy on the volume of the olfactory bulb, with it being 9·0% larger in diploids compared with triploids. The cerebellum and telencephalon, however, were significantly larger, 17 and 8% respectively, in triploids compared with diploids. Sex had no significant effect (P > 0·05) on total brain mass or the volumes of any measured brain region. As the olfactory bulbs, cerebellum and telencephalon are implicated in a number of functions, including foraging ability, aggression and spatial cognition, these results may explain some of the behavioural differences previously reported between diploids and triploids.  相似文献   

19.
20.
Identifying genes that are differentially expressed in response to social interactions is informative for understanding the molecular basis of social behavior. To address this question, we described changes in gene expression as a result of differences in the extent of social interactions. We housed threespine stickleback (Gasterosteus aculeatus) females in either group conditions or individually for one week, then measured levels of gene expression in three brain regions using RNA-sequencing. We found that numerous genes in the hindbrain/cerebellum had altered expression in response to group or individual housing. However, relatively few genes were differentially expressed in either the diencephalon or telencephalon. The list of genes upregulated in fish from social groups included many genes related to neural development and cell adhesion as well as genes with functions in sensory signaling, stress, and social and reproductive behavior. The list of genes expressed at higher levels in individually-housed fish included several genes previously identified as regulated by social interactions in other animals. The identified genes are interesting targets for future research on the molecular mechanisms of normal social interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号