首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Like stomatogastric activity in crustaceans, vocalization in teleosts and frogs, and locomotion in mammals, the electric organ discharge (EOD) of weakly electric fish is a rhythmic and stereotyped electromotor pattern. The EOD, which functions in both perception and communication, is controlled by a two‐layered central pattern generator (CPG), the electromotor CPG, which modifies its basal output in response to environmental and social challenges. Despite major anatomo‐functional commonalities in the electromotor CPG across electric fish species, we show that Gymnotus omarorum and Brachyhypopomus gauderio have evolved divergent neural processes to transiently modify the CPG outputs through descending fast neurotransmitter inputs to generate communication signals. We also present two examples of electric behavioral displays in which it is possible to separately analyze the effects of neuropeptides (mid‐term modulation) and gonadal steroid hormones (long‐term modulation) upon the CPG. First, the nonbreeding territorial aggression of G. omarorum has been an advantageous model to analyze the status‐dependent modulation of the excitability of CPG neuronal components by vasotocin. Second, the seasonal and sexually dimorphic courtship signals of B. gauderio have been useful to understand the effects of sex steroids on the responses to glutamatergic inputs in the CPG. Overall, the electromotor CPG functions in a regime that safeguards the EOD waveform. However, prepacemaker influences and hormonal modulation enable an enormous versatility and allows the EOD to adapt its functional state in a species‐, sex‐, and social context‐specific manners.  相似文献   

2.
Our long-term goal is to approach the understanding of the anatomical and physiological bases for communication signal diversity in gymnotiform fishes as a model for vertebrate motor pattern generation. Brachyhypopomus gauderio emits, in addition to its electric organ discharge (EOD) at basal rate, a rich repertoire of rate modulations. We examined the structure of the pacemaker nucleus, responsible for the EOD rate, to explore whether its high output signal diversity was correlated to complexity in its neural components or regional organization. We confirm the existence of only two neuron types and show that the previously reported dorsal–caudal segregation of these neurons is accompanied by rostral–caudal regionalization. Pacemaker cells are grouped dorsally in the rostral half of the nucleus, and relay cells are mainly ventral and more abundant in the caudal half. Relay cells are loosely distributed from the center to the periphery of the nucleus in correlation to somata size. Our findings support the hypothesis that regional organization enables a higher diversity of rate modulations, possibly offering distinct target areas to modulatory inputs. Since no anatomical or electrophysiological seasonal or sexual differences were found, we explored these aspects from a functional point of view in a companion article.  相似文献   

3.
Studies of pulse-type gymnotiform electric fishes have suggested that electric organ discharge waveforms (EODw) allow individuals to discriminate between conspecific and allospecific signals, but few have approached this experimentally. Here we implement a phase-locked playback technique for a syntopic species pair, Brachyhypopomus gauderio and Gymnotus omarorum. Both species respond to changes in stimulus waveform with a transitory reduction in the interpulse interval of their self-generated discharge, providing strong evidence of discrimination. We also document sustained rate changes in response to different EODws, which may suggest recognition of natural waveforms.  相似文献   

4.
The reproductive biology and feeding habits of the electric fish Brachyhypopomus gauderio were studied. The species has seasonal reproductive behavior, with breeding occurring during the Southern Hemisphere spring and summer, and having a positive relation with the photoperiod variation. Brachyhypopomus gauderio was defined as a fractional spawner, with low relative fecundity and high first maturation size. Sexual dimorphism was registered, males undergoing hypertrophy of the distal portion of caudal filament. The results on reproductive biology herein obtained are in agreement with data concerning gymnotiforms from Southern Brazil and Uruguay, pointing to an ecological pattern for the species from high latitudes, differing from species with tropical distribution. According to the analysis of the food items, B. gauderio feed mainly on autochthonous insects, likewise the other gymnotiforms previously investigated, leading to conclude that there is no variation on the diet of the species of the order related to climatic conditions or even to habitat of occurrence.  相似文献   

5.
Arginine vasotocin (AVT) is a neurotransmitter in the amphibian central nervous system and is released from the neurohypophysis in the regulation of hydromineral balance and other homeostatic functions. Many amphibians experience drastic changes in habitat with respect to water availability during their transformation from aquatic larvae to terrestrial adults. To examine whether metamorphosis is accompanied by a reorganization of central vasotocinergic neurons, the developmental organization of vasotocin neurons and nerve fibers was studied with immunocytochemistry in the brains of bullfrogs (Rana catesbeiana) and woodfrogs (R. sylvatica). In bullfrogs, early limb-bud-stage tadpoles had AVT-immunoreactive neurons and nerve fibers in the lateral septal nucleus, amygdala, preoptic hypothalamus, suprachiasmatic nucleus, and posterodorsal tegmentum. Woodfrog larvae showed similar patterns of hypothalamic AVT immunoreactivity, although neuronal staining in the amygdala did not appear until metamorphic climax, and never appeared in septal neurons or in the posterodorsal tegmentum. Whereas the highly terrestrialR. sylvatica adults must adapt to an adult habitat with prolonged periods of dehydration,R. catesbeiana adults remain semiaquatic and, as such, need not develop extreme mechanisms for water retention. Nonetheless, vasotocinergic pathways showed developmental similarities in the two species. The early appearance of AVT innervation in bothRana suggests that AVT has neuroregulatory functions well before metamorphosis.  相似文献   

6.
7.
Neuroendocrine pathways that regulate social behavior are remarkably conserved across divergent taxa. The neuropeptides arginine vasotocin/vasopressin (AVT/AVP) and their receptor V1a mediate aggression, space use, and mating behavior in male vertebrates. The hormone prolactin (PRL) also regulates social behavior across species, most notably paternal behavior. Both hormone systems may be involved in the evolution of monogamous mating systems. We compared AVT, AVT receptor V1a2, PRL, and PRL receptor PRLR1 gene expression in the brains as well as circulating androgen concentrations of free-living reproductively active males of two closely related North American cichlid species, the monogamous Herichthys cyanoguttatus and the polygynous Herichthys minckleyi. We found that H. cyanoguttatus males bond with a single female and together they cooperatively defend a small territory in which they reproduce. In H. minckleyi, a small number of large males defend large territories in which they mate with several females. Levels of V1a2 mRNA were higher in the hypothalamus of H. minckleyi, and PRLR1 expression was higher in the hypothalamus and telencephalon of H. minckleyi. 11-ketotestosterone levels were higher in H. minckleyi, while testosterone levels were higher in H. cyanoguttatus. Our results indicate that a highly active AVT/V1a2 circuit(s) in the brain is associated with space use and social dominance and that pair bonding is mediated either by a different, less active AVT/V1a2 circuit or by another neuroendocrine system.  相似文献   

8.
The neuronal morphology of the torus semicircularis of the northern leopard frog, Rana pipiens pipiens, was examined in Golgi-impregnated material. Neurons in each of the five subdivisions of the torus semicircularis (Potter, '65a) have distinct morphologies which are characteristic of the subdivision. Laminar nucleus neurons are mostly multipolar with spherical or ovoidal somata and smooth dendrites oriented primarily parallel and perpendicular to the cell laminae. Principal nucleus neurons have variable soma shapes with short dendrites ( < 100 μm) radiating in all directions. In the magnocellular nucleus, there are three major cell types: neurons characterized by small, spherical-shaped somata, with short, thin, radiating dendrites and many varicosities; bi- or tripolar neurons with ovoidal somata, and long (100–200 μm) and smooth dendrites orienting primarily dorsoventrally and mediolaterally; and multipolar neurons with triangular-shaped somata and very long (200–350 μm) dendrites, which are either smooth or highly spiny. Neurons in the commissural nucleus are mostly multipolar cells with ovoidal somata and beaded dendrites projecting mostly dorsally and ventrally. The subependymal midline nucleus contains mostly uni- or bipolar neurons with small ovoidal somata and straight, spiny dendrites. In addition to revealing the morphological features of neurons in the torus, the counterstained material shows further cytoarchitectural organization of the principal nucleus, i.e., the presence of a circular lamellar organization. The functional significance of these anatomical features is discussed.  相似文献   

9.
Modeling the electric field and images in electric fish contributes to a better understanding of the pre-receptor conditioning of electric images. Although the boundary element method has been very successful for calculating images and fields, complex electric organ discharges pose a challenge for active electroreception modeling. We have previously developed a direct method for calculating electric images which takes into account the structure and physiology of the electric organ as well as the geometry and resistivity of fish tissues. The present article reports a general application of our simulator for studying electric images in electric fish with heterogeneous, extended electric organs. We studied three species of Gymnotiformes, including both wave-type (Apteronotus albifrons) and pulse-type (Gymnotus obscurus and Gymnotus coropinae) fish, with electric organs of different complexity. The results are compared with the African (Gnathonemus petersii) and American (Gymnotus omarorum) electric fish studied previously. We address the following issues: 1) how to calculate equivalent source distributions based on experimental measurements, 2) how the complexity of the electric organ discharge determines the features of the electric field and 3) how the basal field determines the characteristics of electric images. Our findings allow us to generalize the hypothesis (previously posed for G. omarorum) in which the perioral region and the rest of the body play different sensory roles. While the “electrosensory fovea” appears suitable for exploring objects in detail, the rest of the body is likened to a “peripheral retina” for detecting the presence and movement of surrounding objects. We discuss the commonalities and differences between species. Compared to African species, American electric fish show a weaker field. This feature, derived from the complexity of distributed electric organs, may endow Gymnotiformes with the ability to emit site-specific signals to be detected in the short range by a conspecific and the possibility to evolve predator avoidance strategies.  相似文献   

10.
The ultrastructural morphology of peripheral neurons and associated structures in the bivalve mollusc, Spisula solidissima have been studied in an effort to describe the synaptic topography and to provide anatomical correlates of previous physiological observations. The somata of the peripheral neurons are located within the perineurium at branch points of the siphonal nerves. There are many fiber-fiber synaptic contacts which are characterized by isolated sites of contact with membrane specialization and unilateral accumulation of synaptic vesicles. There are also synaptic contacts involving the somata, both axo-somatic and somato-axonic, the two being distinguishable on the basis of the polarity of vesicle accumulation. All of the observed synaptic profiles were similar in appearance regardless of the neuron loci involved. Much of the non-synaptic soma surface is covered with processes of glial cells. Likewise, in many cases, individual fibers and groups of fibers are encased with glial processes. Unique clusters of membrane bound, pigment containing glial like cells occur throughout the nervous system of Spisula. The heterogeneous appearance of the inclusions and the presence of lysosome-like bodies in the cytoplasm of these cells suggest a possible phagocytic role.  相似文献   

11.
Wholemount immunohistochemical methods were used to examine the localization of γ-aminobutyric acid (GABA) and glutamate within the cardiac system of the Caribbean spiny lobster Panulirus argus. All of the GABA-like immunoreactivity (GABAi) in the cardiac ganglion originated from a single bilateral pair of fibers that entered the heart via the two dorsal nerves. Each GABAi axon bifurcated upon entering the ganglion and gave rise to varicose fibers that surrounded the somata and initial segments of the five large motor neurons. The four small posterior cells did not appear to receive somatic contacts. Double-labeling experiments in which individual motor neurons were injected with Neurobiotin showed that their dendritic processes, which project to muscle bundles adjacent to the ganglion and are thought to respond to stretch, were also accompanied by branches of the GABAi fibers. Glutamate-like immunoreactivity (GLUi) was present in each of the motor neuron cell bodies. In some preparations, GLUi was also detected in large caliber fibers in the major ganglionic nerves. These fibers gave rise to more slender branches that innervated the cardiac muscle bundles. GLUi was also found in the small cell bodies and in fibers surrounding motor neuron somata. Taken together, these findings support previous electrophysiological, pharmacological and anatomical studies indicating that GABA mediates extrinsic inhibition and that glutamate acts as a neuromuscular and intraganglionic transmitter in this system. While axosomatic contacts may play a major role in both transmitter systems, the GABAergic inhibition also appears to involve substantial axodendritic synaptic signaling.  相似文献   

12.
Gonadotropin-releasing hormone (GnRH) and arginine vasotocin (AVT) are critical regulators of reproductive behaviors that exhibit tremendous plasticity, but co-variation in discrete GnRH and AVT neuron populations among sex and season are only partially described in fishes. We used immunocytochemistry to examine sexual and temporal variations in neuron number and size in three GnRH and AVT cell groups in relation to reproductive activities in the halfspotted goby (Asterropteryx semipunctata). GnRH-immunoreactive (-ir) somata occur in the terminal nerve, preoptic area, and midbrain tegmentum, and AVT-ir somata within parvocellular, magnocellular, and gigantocellular regions of the preoptic area. Sex differences were found among all GnRH and AVT cell groups, but were time-period dependent. Seasonal variations also occurred in all GnRH and AVT cell groups, with coincident elevations most prominent in females during the peak- and non-spawning periods. Sex and temporal variability in neuropeptide-containing neurons are correlated with the goby's seasonally-transient reproductive physiology, social interactions, territoriality and parental care. Morphological examination of GnRH and AVT neuron subgroups within a single time period provides detailed information on their activities among sexes, whereas seasonal comparisons provide a fine temporal sequence to interpret the proximate control of reproduction and the evolution of social behavior.  相似文献   

13.
The communication signals of electric fish can be dynamic, varying between the sexes on a circadian rhythm and in response to social and environmental cues. In the gymnotiform fish Brachyhypopomus gauderio waveform shape of the electric organ discharge (EOD) is regulated by steroid and peptide hormones. Furthermore, EOD amplitude and duration change on different timescales and in response to different social stimuli, suggesting that they are regulated by different mechanisms. Little is known about how androgen and peptide hormone systems interact to regulate signal waveform. We investigated the relationship between the androgens testosterone (T) and 11-ketotestosterone (11-KT), the melanocortin peptide hormone α-MSH, and their roles in regulating EOD waveform of male B. gauderio. Males were implanted with androgen (T, 11-KT, or blank), and injected with α-MSH before and at the peak of androgen effect. We compared the effects of androgen implants and social interactions by giving males a size-matched male stimulus with which they could interact electrically. Social stimuli and both androgens increased EOD duration, but only social stimuli and 11-KT elevated amplitude. However, no androgen enhanced EOD amplitude to the extent of a social stimulus, suggesting that a yet unidentified hormonal pathway regulates this signal parameter. Additionally, both androgens increased response of EOD duration to α-MSH, but only 11-KT increased response of EOD amplitude to α-MSH. Social stimuli had no effect on EOD response to α-MSH. The finding that EOD amplitude is preferentially regulated by 11-KT in B. gauderio may provide the basis for independent control of amplitude and duration.  相似文献   

14.
The social organization of rodent species determines behavioral patterns for both affiliative and agonistic encounters. The neuropeptide oxytocin has been implicated in the mediation of social behavior; however, variability in both neuropeptide expression and social behavior within a single species indicates an additional mediating factor. The purpose of the present comparative study was to investigate social behaviors in naïve mixed-sex pairs of monogamous Peromyscus californicus and polygynous Peromyscus leucopus. We identified substantial inter- and intra-specific variability in the expression of affiliative and agonistic behaviors. Although all P. californicus tested engaged in frequent and prolonged intervals of social contact and rarely engaged in aggressive behaviors, P. leucopus exhibited significant variability in both measures of social behaviors. The naturally occurring differences in social behavior displayed by P. leucopus vary across the estrous cycle, and correspond to hypothalamic oxytocin, as well as circulating oxytocin and glucocorticoid concentrations. These results provide evidence for a rhythm in social behavior across the estrous cycle in polygynous, but not monogamous, Peromyscus species.  相似文献   

15.
Summary The anatomical distribution of neurons and nerve fibers containing corticotropin-releasing factor (CRF) has been studied in the brain of the snake, Natrix maura, by means of immunocytochemistry using an antiserum against rat CRF. To test the possible coexistence of CRF with the neurohypophysial peptides arginine vasotocin (AVT) and mesotocin (MST) adjacent sections were stained with antisera against the two latter peptides. CRF-immunoreactive (CRF-IR) neurons exist in the paraventricular nucleus (PVN). In some neurons of the PVN, coexistence of CRF with MST or of CRF with AVT has been shown. Numerous CRF-IR fibers run along the hypothalamo-hypophysial tract and end in the outer layer of the median eminence. In addition, some fibers reach the neural lobe of the hypophysis. CRF-IR perikarya have also been identified in the following locations: dorsal cortex, nucleus accumbens, amygdala, subfornical organ, lamina terminalis, nucleus of the paraventricular organ, nucleus of the oculomotor nerve, nucleus of the trigeminal nerve, and reticular formation. In addition to all these locations CRF-IR fibers were also observed in the lateral septum, supraoptic nucleus, habenula, lateral forebrain bundle, paraventricular organ, hypothalamic ventromedial nucleus, raphe and interpeduncular nuclei.  相似文献   

16.
Vasotocin/vasopressin is a neuropeptide that regulates social and reproductive behaviors in a variety of animals including fish. Arginine vasotocin (AVT) is expressed by cells in the ventral hypothalamic and preoptic areas in the diencephalon during embryogenesis in zebrafish suggesting that vasotocin might mediate other functions within the CNS prior to the development of social and reproductive behaviors. In order to examine potential early roles for vasotocin we cloned two zebrafish vasotocin receptors homologous to AVPR1a. The receptors are expressed primarily in the CNS in similar but generally non-overlapping patterns. Both receptors are expressed in the forebrain, midbrain and hindbrain by larval stage. Of note, AVTR1a-expressing neurons in the hindbrain appear to be contacted by the axons of preoptic neurons in the forebrain that include avt+ neurons and sensory axons in the lateral longitudinal fasciculus (LLF). Furthermore, AVTR1a-expressing hindbrain neurons extend axons into the medial longitudinal fasciculus (MLF) that contains axons of many neurons thought to be involved in locomotor responses to sensory stimulation. One hypothesis consistent with this anatomy is that AVT signaling mediates or gates sensory input to motor circuits in the hindbrain and spinal cord.  相似文献   

17.
Vasotocin/vasopressin is a neuropeptide that regulates social and reproductive behaviors in a variety of animals including fish. Arginine vasotocin (AVT) is expressed by cells in the ventral hypothalamic and preoptic areas in the diencephalon during embryogenesis in zebrafish suggesting that vasotocin might mediate other functions within the CNS prior to the development of social and reproductive behaviors. In order to examine potential early roles for vasotocin we cloned two zebrafish vasotocin receptors homologous to AVPR1a. The receptors are expressed primarily in the CNS in similar but generally non-overlapping patterns. Both receptors are expressed in the forebrain, midbrain and hindbrain by larval stage. Of note, AVTR1a-expressing neurons in the hindbrain appear to be contacted by the axons of preoptic neurons in the forebrain that include avt+ neurons and sensory axons in the lateral longitudinal fasciculus (LLF). Furthermore, AVTR1a-expressing hindbrain neurons extend axons into the medial longitudinal fasciculus (MLF) that contains axons of many neurons thought to be involved in locomotor responses to sensory stimulation. One hypothesis consistent with this anatomy is that AVT signaling mediates or gates sensory input to motor circuits in the hindbrain and spinal cord.  相似文献   

18.
The auditory sense organ of Tettigoniidae (Insecta, Orthoptera) is located in the foreleg tibia and consists of scolopidial sensilla which form a row termed crista acustica. The crista acustica is associated with the tympana and the auditory trachea. This ear is a highly ordered, tonotopic sensory system. As the neuroanatomy of the crista acustica has been documented for several species, the most distal somata and dendrites of receptor neurons have occasionally been described as forming an alternating or double row. We investigate the spatial arrangement of receptor cell bodies and dendrites by retrograde tracing with cobalt chloride solution. In six tettigoniid species studied, distal receptor neurons are consistently arranged in double‐rows of somata rather than a linear sequence. This arrangement of neurons is shown to affect 30–50% of the overall auditory receptors. No strict correlation of somata positions between the anterio‐posterior and dorso‐ventral axis was evident within the distal crista acustica. Dendrites of distal receptors occasionally also occur in a double row or are even massed without clear order. Thus, a substantial part of auditory receptors can deviate from a strictly straight organization into a more complex morphology. The linear organization of dendrites is not a morphological criterion that allows hearing organs to be distinguished from nonhearing sense organs serially homologous to ears in all species. Both the crowded arrangement of receptor somata and dendrites may result from functional constraints relating to frequency discrimination, or from developmental constraints of auditory morphogenesis in postembryonic development. J. Morphol. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The cyclic enrichment of behavioral repertoires is a common event in seasonal breeders. Breeding males Brachyhypopomus gauderio produce electric organ discharge (EOD) rate modulations called chirps while females respond with interruptions. The electromotor system is commanded by a pacemaker nucleus (PN) which sets the basal rate and produces the rate modulations. We focused on identifying functional, seasonal and sexual differences in this nucleus in correlation to these differences in behavior. The in vivo response to glutamate injection in the PN was seasonal, sexually dimorphic and site specific. Non-breeding adults and breeding females injected in dorsal and ventral sites generated EOD rate increases and interruptions, respectively. Reproductive males added a conspicuous communication signal to this repertoire. They chirped repetitively when we injected glutamate in a very restricted area of the ventral–rostral nucleus, surprisingly one with a low number of relay cell somata. This study shows that the PN is functionally organized in regions in a caudal–rostral axis, besides the previously documented dorsal–ventral division. Functional regions are revealed by seasonal changes that annually provide this nucleus with the cellular mechanisms that allow the bursting activity underlying chirp production, only in males.  相似文献   

20.
Males and females commonly compete for limited resources. When interaction costs are similar for both sexes and there are no sexual differences in resource value estimation, a non‐sex‐biased dominance is expected. Moreover, only non‐sex‐biased assessment of contenders fighting ability (Resource Holding Potential, RHP) should influence contest decisions. To test these predictions, we evaluated non‐breeding agonistic intra‐ and intersexual dyadic interactions in the weakly electric fish, Gymnotus omarorum. During the non‐breeding season, resource value is not expected to depend on individuals’ reproductive status and should thus be equal for males and females. In addition, as G. omarorum presents no sexual differences in body size, interaction costs can be considered symmetric between sexes. We confirmed that body size differences, but not individuals’ gender, is the best predictor of dominance. We correlated RHP asymmetries with contest duration and evidenced that body size but not sex influences assessment in intrasexual and intersexual encounters. All dyads tested engaged in agonistic interactions (N = 33) in which a clear dominant emerged. The analysis of conflict phases evidenced the submissive role of electric displays. Electric organ discharge (EOD) interruptions appear early in the contest as an electric hiding attempt, whereas chirps are post‐resolution signals of subordinate status. Interestingly, the decision of interrupting the EOD was also influenced by RHP asymmetries, whereas chirping activity was influenced by the intensity of the attacks received. Our results confirm that body size is the best RHP proxy in non‐breeding intra‐ and intersexual contests of this monomorphic species and demonstrated a sequential pattern of submissive signalling by means of two different electric displays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号