首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Low-level production of the superoxide anion (O2*-) is an important signal transduction event in sperm function including capacitation; however, excessive production of O2*- can be detrimental to sperm function. The objective of this study was to assess dihydroethidium (DHE) as a probe for O2*- in equine spermatozoa. Ejaculated spermatozoa were separated by centrifugation over a Percoll gradient (40:80), and loaded with DHE (2.0 microM) as well as with calcein-acetoxymethylester (CAM, 7.8 nM) to determine cell viability. In Experiment 1, cells were incubated with the xanthine-xanthine oxidase (X, 0.1 mM; XO, 0.01 U/mL) generating system for the production of O2*-, with or without the addition of superoxide dismutase (SOD, 150 U/mL) or the SOD mimetic, Tiron (0.1, 1.0 or 5.0 mM) for 1h. Changes in fluorescence of DHE were determined for the live cell population (calcein-positive cells) by flow cytometry. The DHE fluorescence increased with the X-XO incubation; this increase was inhibited by SOD or Tiron, indicating that DHE is specific for O2*- detection. In Experiment 2, spermatozoa were loaded with DHE/CAM, treated with calcium ionophore A23187 (0, 0.8, or 8.0 microM), and incubated for 15 min. Cell fluorescence was again determined by flow cytometry. Calcium ionophore A23187 increased O2*- production in a dose-dependent manner. In Experiment 3, cells were loaded with DHE/CAM, treated with NADPH (0.0, 0.25, 0.5, or 1 mM) with or without 0.5% Triton X-100, and incubated for 15 min prior to flow cytometry. Cells treated with NADPH with or without 0.5% Triton X-100 did not have O2*- levels that were significantly different from the control. In Experiment 4, spermatozoa loaded with DHE/CAM were incubated under capacitating conditions (1.2 mM dibutryl-cAMP+1.0 mM caffeine) or in control media for 3h. Although O2*- generation increased over time in control and capacitated treatments, spermatozoa incubated under capacitating conditions had higher O2*- production than those incubated in control media. Therefore, DHE was a useful probe for the detection of O2*- in equine spermatozoa and elevation in intracellular calcium as well as capacitation in vitro were associated with increased generation of O2*-.  相似文献   

2.
Uptake of external sterols in the yeast Saccharomyces cerevisiae is a multistep process limited to anaerobiosis or heme deficiency. It includes crossing the cell wall, insertion of sterol molecules into plasma membrane and their internalization and integration into intracellular membranes. We applied the fluorescent ergosterol analog dehydroergosterol (DHE) to monitor the initial steps of sterol uptake by three independent approaches: fluorescence spectroscopy, fluorescence microscopy and sterol quantification by HPLC. Using specific fluorescence characteristics of DHE we showed that the entry of sterol molecules into plasma membrane is not spontaneous but requires assistance of two ABC (ATP-binding cassette) pumps – Aus1p or Pdr11p. DHE taken up by uptake-competent hem1ΔAUS1PDR11 cells could be directly visualized by UV-sensitive wide field fluorescence microscopy. HPLC analysis of sterols revealed significant amounts of exogenous ergosterol and DHE (but not cholesterol) associated with uptake-deficient hem1Δaus1Δpdr11Δ cells. Fluorescent sterol associated with these cells did not show the characteristic emission spectrum of membrane-integrated DHE. The amount of cell-associated DHE was significantly reduced after enzymatic removal of the cell wall. Our results demonstrate that the yeast cell wall is actively involved in binding and uptake of ergosterol-like sterols.  相似文献   

3.
The selectivity of in vitro photodynamic reactions and the in vivo effects induced by PRT, whether the irradiation is applied interstitially or externally, still remains unclear. In vitro studies were performed using leukemic cell lines and syngeneic normal hemopoietic progenitors. For these, cells incubated with hematoporphyrin derivative (HPD) and non-incubated cells were irradiated with an argon laser. Data were obtained as the count of cell colonies found after a 7-day incubation period on semi-solid collagen gel medium. In vivo studies employed the HT 29 tumor model grafted into nude mice. Both animals injected with HPD and non-infected controls were irradiated with a dye laser pumped by an argon laser (Coherent) using a 400 micron optic fiber located either at a distance of 65 mm from the skin or inserted into the tumor. The temperature increase occurring during PRT was measured using non-absorbing thermocouples. In vitro, after HPD treatment and argon irradiation leukemic cells showed a greater phototoxicity (greater than 2 log10) than did the normal cells (0.25 log10). In vivo, when the heat rise is very similar (less than 4 degrees C) in both the tissues irradiated externally and those irradiated interstitially after HPD injection, histological examination of these did not reveal any quantitative differences (90% of tumor mass). These results are discussed.  相似文献   

4.
Transport of the fluorescent cholesterol analog dehydroergosterol (DHE) from the plasma membrane was studied in J774 macrophages (Mphis) with normal and elevated cholesterol content. Cells were labeled with DHE bound to methyl-beta-cyclodextrin. In J774, Mphis with normal cholesterol, intracellular DHE became enriched in recycling endosomes, but was not highly concentrated in the trans-Golgi network or late endosomes and lysosomes. After raising cellular cholesterol by incubation with acetylated low-density lipoprotein (AcLDL), DHE was transported to lipid droplets, and less sterol was found in recycling endosomes. Transport of DHE to droplets was very rapid (t1/2 = 1.5 min after photobleaching) and did not require metabolic energy. In cholesterol-loaded J774 Mphis, the initial fraction of DHE in the plasma membrane was reduced, and rapid DHE efflux from the plasma membrane to intracellular organelles was observed. This rapid sterol transport was not related to plasma membrane vesiculation, as DHE did not become enriched in endocytic vesicles formed after sphingomyelinase C treatment of cells. When cells were incubated with DHE ester incorporated into AcLDL, fluorescence of the sterol was first found in punctate endosomes. After a chase, this DHE colocalized with transferrin in a distribution similar to cells labeled with DHE delivered by methyl-beta-cyclodextrin. Our results indicate that elevation of sterol levels in Mphis enhances transport of sterol from the plasma membrane by a non-vesicular pathway.  相似文献   

5.
Photodynamic therapy represents a new approach for the local control of cancers. It has recently been claimed that photodynamic therapy mediated by hematoporphyrin derivative (HPD) is selectively more efficient for killing leukemic cells than normal progenitors. To improve this effect, we studied the influence of hematoporphyrin dose, temperature during incubation and/or treatment, hematoporphyrin derivative incubation time, and fractionation of the argon laser light (488-514 nm) used for hematoporphyrin stimulation. Plating efficiency calculated after a 7-day period of growth on collagen gel medium showed a dose-dependent phototoxicity of HPD reaching 0.01% for normal hemopoietic progenitors and 0.001% for leukemic cells (dose = 12.5 micrograms/ml). The 10:1 ratio of normal hemopoietic progenitors to leukemic cells was also found to be the same or increased when temperature was 37 degrees C during incubation and 4 degrees C during laser irradiation. Similar results were also found when incubation time was varied from 75-120 min, or when laser irradiation dose was fractionated into 2 or 3 periods. The ratio of normal progenitors to leukemic cells reached 100:1 when 75 J/cm2 were fractionated into 3 periods after an incubation time of 120 min with 10 micrograms/ml HPD. Selectivity in photodynamic treatment seems to occur between normal hemopoietic progenitors and leukemic cells. The mechanism of this selectivity remains unclear, but experiments with the fractionated irradiation dose suggest that as in radiotherapy, better potentially lethal damage repair in normal cells could be a factor for selectivity in photodynamic therapy. Our results obtained with leukemic cells are fully in agreement with data in the literature concerning similar experimental models.  相似文献   

6.
Transbilayer lipid asymmetry is a fundamental characteristic of the eukaryotic cell plasma membrane (PM). While PM phospholipid asymmetry is well documented, the transbilayer distribution of PM sterols such as mammalian cholesterol and yeast ergosterol is not reliably known. We now report that sterols are asymmetrically distributed across the yeast PM, with the majority (~80%) located in the cytoplasmic leaflet. By exploiting the sterol‐auxotrophic hem1Δ yeast strain we obtained cells in which endogenous ergosterol was quantitatively replaced with dehydroergosterol (DHE), a closely related fluorescent sterol that functionally and accurately substitutes for ergosterol in vivo. Using fluorescence spectrophotometry and microscopy we found that <20% of DHE fluorescence was quenched when the DHE‐containing cells were exposed to membrane‐impermeant collisional quenchers (spin‐labeled phosphatidylcholine and trinitrobenzene sulfonic acid). Efficient quenching was seen only after the cells were disrupted by glass‐bead lysis or repeated freeze‐thaw to allow quenchers access to the cell interior. The extent of quenching was unaffected by treatments that deplete cellular ATP levels, collapse the PM electrochemical gradient or affect the actin cytoskeleton. However, alterations in PM phospholipid asymmetry in cells lacking phospholipid flippases resulted in a more symmetric transbilayer distribution of sterol. Similarly, an increase in the quenchable pool of DHE was observed when PM sphingolipid levels were reduced by treating cells with myriocin. We deduce that sterols comprise up to ~45% of all inner leaflet lipids in the PM, a result that necessitates revision of current models of the architecture of the PM lipid bilayer.   相似文献   

7.
Recent studies have demonstrated that metabolic changes in mammals induce feedback regulation of the circadian clock. The present study evaluates the effects of a low-carbohydrate high-protein diet (HPD) on circadian behavior and peripheral circadian clocks in mice. Circadian rhythms of locomotor activity and core body temperature remained normal in mice fed with the HPD diet (HPD mice), suggesting that it did not affect the central clock in the hypothalamus. Two weeks of HPD feeding induced mild hypoglycemia without affecting body weight, although these mice consumed more calories than mice fed with a normal diet (ND mice). Plasma insulin levels were increased during the inactive phase in HPD mice, but increased twice, beginning and end of the active phase, in ND mice. Expression levels of the key gluconeogenic regulatory genes PEPCK and G6Pase were significantly induced in the liver and kidneys of HPD mice. The HPD appeared to induce peroxisome proliferator-activated receptor α (PPARα) activation, since mRNA expression levels of PPARα and its typical target genes, such as PDK4 and Cyp4A10, were significantly increased in the liver and kidneys. Circadian mRNA expression of clock genes, such as BMAL1, Cry1, NPAS2, and Rev-erbα, but not Per2, was significantly phase-advanced, and mean expression levels of BMAL1 and Cry1 mRNAs were significantly elevated, in the liver and kidneys of HPD mice. These findings suggest that a HPD not only affects glucose homeostasis, but that it also advances the molecular circadian clock in peripheral tissues. (Author correspondence: )  相似文献   

8.
Increased reactive oxygen species (ROS) are a feature of aging cells, but little is known about when ROS generation begins as cells age. Here we show how ROS change in Saccharomyces cerevisiae cells throughout their early replicative life span using the fluorescent ROS indicator dihydroethidium (DHE), which has some specificity for the superoxide anion. Cells in a particular age range were heterogeneous with respect to their ROS burden. Surprisingly, some cells as young as 5-7 generations acquired a greatly increased level of ROS detected by DHE relative to virgin cells. By 12 generations 50% of cells had a substantial ROS burden despite being only halfway through their life span. In contrast to the wild type, cells of a sir2 mutant had lower levels of ROS reacting with DHE. Daughters from older mothers had low ROS levels, and this asymmetric distribution of ROS was SIR2-independent. Mitochondrial fragmentation also began to occur in cells after 4 generations and increased markedly as cells aged. Daughter cells regenerated normal tubular mitochondria despite the fragmentation of mitochondria in the mother cells, whereas daughters of the sir2 mutant had fragmented mitochondria at all ages.  相似文献   

9.
本实验选用经腹股沟皮下接种W256瘤细胞株形成实验性荷瘤大鼠40只,采用光动力学疗法对患有移植瘤大鼠进行治疗,并同时检测血浆、肝脏及瘤组织中超氧化物歧化酶的活力及氧自由基代谢产物丙二醛含量。结果如下:(1)大鼠输入经紫外光照射之血后,其肿瘤生长速度明显减慢(P〈0.05),大鼠输入注有血卟啉衍生物的血后,其肿瘤生长亦显著减慢(P〈0.01);大鼠输入经紫外光照射并含有血卟淋衍生物之血后,其肿瘤生长  相似文献   

10.
Although it has been recognized for over a decade that hypothalamic-pituitary disconnection (HPD) in fetal sheep prevents the late gestation rise in plasma cortisol concentrations, the underlying mechanisms remain unclear. We hypothesized that reductions in adrenal responsiveness and ACTH receptor (ACTH-R) expression may be mediating factors. HPD or sham surgery was performed at 120 days of gestation, and catheters were placed for blood sampling. At approximately 138 days of gestation, fetuses were killed, and adrenals were removed for cell culture and analyses of ACTH-R mRNA and protein. After 48 h, adrenocortical cells were stimulated with ACTH for 2 h, and the medium was collected for cortisol measurement. The same cells were incubated overnight with medium or medium containing ACTH or forskolin (FSK), followed by ACTH stimulation (as above) and cortisol and cellular ACTH-R mRNA analyses. HPD prevented the late gestation increase in plasma cortisol and bioactive ACTH and reduced adrenal ACTH-R mRNA and protein levels by over 35%. HPD cells secreted significantly less cortisol than sham cells (3.2 +/- 1.2 vs. 47.3 +/- 11.1 ng.ml(-1).2 h(-1)) after the initial ACTH stimulation. Overnight incubation of HPD cells with ACTH or FSK restored cortisol responses to acute stimulation to levels seen in sham cells initially. ACTH-R mRNA levels in cells isolated from HPD fetuses were decreased by over 60%, whereas overnight incubation with ACTH or FSK increased levels by approximately twofold. Our findings indicate that the absence of the cortisol surge in HPD fetuses is a consequence, at least in part, of decreased ACTH-R expression and adrenal responsiveness.  相似文献   

11.
Summary. Nephrectomy in mice provokes a decrease in creatinine clearance (CTNCl) and an increase in urea and specific guanidino compound (GC) concentrations in blood and other tissues. Our purpose was to investigate the influence of high protein diet (HPD) on CTNCl, urea and GC levels in NX mice. Mice were nephrectomized or sham-operated and subdivided in groups to study five diet conditions. At the end of each experiment, 10 days and 30 days postsurgery, urine and blood were collected for determination of urea and GCs, including creatinine. HPD resulted in significantly higher CTNCl values in sham-operated mice than those observed in mice under normal protein diet, 10 days as well as 30 days postnephrectomy. HPD induced significant increases in plasma urea, guanidinosuccinic acid, argininic acid and α-keto-δ-guanidinovaleric acid concentration 10 days postsurgery but not 30 days postsurgery. HPD coincided with significantly higher excretion of urea, guanidinosuccinic acid, α-keto-δ-guanidinovaleric acid, creatine, argininic acid and γ-guanidinobutyric acid in sham-operated and nephrectomized mice 10 days postsurgery. Our results show that HPD induces supplementary (to nephrectomy) increases of urea and GCs in the early postsurgery period but not in the later phase. Received June 13, 2000 Accepted January 9, 2001  相似文献   

12.
The-low potential-difference (LPD) cells and the high-potential-difference (HPD) cells ofManduca sexta midgut epithelium have not previously been directly linked with the two major histological cell types, goblet and columnar cells. Using ionophoretic injection of fluorescent dye into LPD and HPD impalement types, we have located the dye-filled cells with the fluorescence microscope, and directly linked the goblet cell with the LPD impalement type and the columnar cell with the HPD impalement type. Thus, for the first time in this polymorphic tissue, the impalement type responsible for active ion transport, the LPD type, has been identified as the goblet cell.Supported in part by USPHS grantr AMR-21890  相似文献   

13.
Inactivation of viruses with photoactive compounds.   总被引:6,自引:0,他引:6  
The transmission of human immunodeficiency virus (HIV-1) and other enveloped virus by blood transfusion is a major concern. Photosensitive dyes such as hematoporphyrin derivative (HPD), dihematoporphyrin ether (DHE), benzoporphyrin derivatives (BPD), extended ring porphyrins, sapphyrins and texaphyrins, and various cyanines were used with viral cultures to test the feasibility of using those light-excitable dyes to kill virus. A photodynamic flow cell was used to irradiate viral suspensions or viral infected cells in culture media or in whole blood. Herpes virus (HSV-1) was used to screen compounds. Effective compounds were subsequently tested for their ability to kill HIV-1, CMV, and SIV in culture medium and in blood and proved to effectively kill free virus and infected cells at significant viremias. Irradiation was achieved with a filtered xenon light source and/or tunable dye laser. Concentrations of dyes at 10 times viral kill dose were irradiated in blood which was tested for damage to erythrocytes (RBC), platelets, and blood proteins. No damage to RBC, complement factors, and immunoglobulins was evident immediately after photodynamic treatment. Platelet condition is minimally modified with time. Photodynamic treatment of blood appears to be a feasible means of eradicating virus and some protozoans from blood.  相似文献   

14.
Abstract Comparison of the whole cell protein profiles of Staphylococcus epidermidis grown in pooled human peritoneal dialysate (HPD) with those of cells grown in nutrient broth (NB) revealed proteins of 27, 39, 45, 54 and 98 kDa which were absent or poorly expressed in NB-grown cells. IgG, but not transferrin, was detected bound to the surface of bacteria grown in HPD. Immunoblotting experiments revealed that IgG antibodies present in pooled HPD recognised staphylococcal protein antigens of 16, 27, 35, 39, 45, 54 and 98 kDa. The 16-, 35- and 39-kDa antigens which were associated with the cytoplasmic membrane were repressed following growth in NB or in HPD supplemented with excess iron.  相似文献   

15.
The fluorescent sterol dehydroergosterol (DHE) is often used as a marker for cholesterol in cellular studies. We show by vesicle fluctuation analysis that DHE has a lower ability than cholesterol to stiffen lipid bilayers suggesting less efficient packing with phospholipid acyl chains. Despite this difference, we found by fluorescence and atomic force microscopy, that DHE induces liquid-ordered/-disordered coexistent domains in giant unilamellar vesicles (GUVs) and supported bilayers made of dipalmitoylphosphatidylcholine (DPPC), dioleylphosphatidylcholine (DOPC) and DHE or cholesterol. DHE-induced phases have a height difference of 0.9-1 nm similar as known for cholesterol-containing domains. DHE not only promotes formation of liquid-liquid immiscibility but also shows strong partition preference for the liquid-ordered phase further supporting its suitability as cholesterol probe.  相似文献   

16.
We studied the transport of the fluorescent cholesterol analog dehydroergosterol (DHE) in polarized HepG2 human hepatoma cells. DHE delivered via methyl-beta-cyclodextrin was delivered to both the apical and basolateral membranes and became concentrated in the apical membrane within 1 min. Intracellular DHE was targeted mainly to vesicles of the subapical compartment or apical recycling compartment (SAC/ARC), where it colocalized with fluorescent transferrin and fluorescent analogs of phosphatidylcholine and sphingomyelin. In contrast, transport of DHE from the plasma membrane to the trans-Golgi network was found to be very low. Vesicles containing DHE traversed the cells in both directions, but vesicular export of DHE from the SAC/ARC to the plasma membrane domains was low. Disruption of the microtubule cytoskeleton disturbed vesicular transport of DHE but not its enrichment in the apical (canalicular) membrane. Transport of DHE to the canalicular membrane after photobleaching was very rapid (t(12) = 1.6 min) and was largely ATP-independent in contrast to enrichment of DHE in the SAC/ARC. Release of DHE from the canalicular membrane was also ATP-independent but slower than the enrichment of sterol in the biliary canaliculus (t(12) = 5.4 min). Canalicular DHE could completely redistribute to the basolateral plasma membrane but could not transfer from one cell to the other cell of an HepG2 couplet. We conclude that sterol shuttles rapidly among the plasma membrane domains and other membrane organelles and that this nonvesicular pathway includes fast transbilayer migration.  相似文献   

17.
Hereditary progressive dystonia with marked diurnal fluctuation (HPD; dopa-responsive dystonia, DRD) have been recently found to be caused by a genetic defect in the GTP cyclohydrolase I (GCH1) gene. In this study, we quantified the mRNA level of GCH1 in phytohemagglutinin (PHA)-stimulated mononuclear blood cells from one Japanese family that do not have a mutation in the coding region or splice junctions of the gene. The results showed that the amounts of the GCH1 mRNA were decreased to about 40% of the normal level in both patients and carriers. In addition, we found that the GCH1 mRNA was transcribed from only one allele, indicating that the other allele was in an inactive state. These results suggest that some novel mutations should exist on one of the alleles in some unknown region of the GCH1 gene, and may decrease the GCH1 mRNA causing the HPD/DRD symptoms.  相似文献   

18.
Cancer cells, relative to normal cells, demonstrate increased sensitivity to glucose-deprivation-induced cytotoxicity. To determine whether oxidative stress mediated by O(2)(*-) and hydroperoxides contributed to the differential susceptibility of human epithelial cancer cells to glucose deprivation, the oxidation of DHE (dihydroethidine; for O(2)(*-)) and CDCFH(2) [5- (and 6-)carboxy-2',7'-dichlorodihydrofluorescein diacetate; for hydroperoxides] was measured in human colon and breast cancer cells (HT29, HCT116, SW480 and MB231) and compared with that in normal human cells [FHC cells, 33Co cells and HMECs (human mammary epithelial cells)]. Cancer cells showed significant increases in DHE (2-20-fold) and CDCFH(2) (1.8-10-fold) oxidation, relative to normal cells, that were more pronounced in the presence of the mitochondrial electron-transport-chain blocker, antimycin A. Furthermore, HCT116 and MB231 cells were more susceptible to glucose-deprivation-induced cytotoxicity and oxidative stress, relative to 33Co cells and HMECs. HT29 cells were also more susceptible to 2DG (2-deoxyglucose)-induced cytotoxicity, relative to FHC cells. Overexpression of manganese SOD (superoxide dismutase) and mitochondrially targeted catalase significantly protected HCT116 and MB231 cells from glucose-deprivation-induced cytotoxicity and oxidative stress and also protected HT29 cells from 2DG-induced cytotoxicity. These results show that cancer cells (relative to normal cells) demonstrate increased steady-state levels of ROS (reactive oxygen species; i.e. O(2)(*-) and H(2)O(2)) that contribute to differential susceptibility to glucose-deprivation-induced cytotoxicity and oxidative stress. These studies support the hypotheses that cancer cells increase glucose metabolism to compensate for excess metabolic production of ROS and that inhibition of glucose and hydroperoxide metabolism may provide a biochemical target for selectively enhancing cytotoxicity and oxidative stress in human cancer cells.  相似文献   

19.
The photodynamic effect of hematoporphyrin derivative (HPD) on the viability of penicillin-resistantStaphylococcus aureus is described. Growth rate of the bacteria was markedly reduced by exposure to light and HPD.Staphylococcus viability was decreased by 80% in 3 h of growth even at low HPD concentration (12 g/ml). A synergistic killing effect of HPD, light, and penicillin (10 g/ml) onStaphylococcus aureus was demonstrated, although the bacteria were originally resistant to 100 g/ml penicillin. A residual viability of only 3% was found by growth in medium containing this drug combination. The surviving bacteria after 3 h of treatment were sensitive even to 1 g penicillin/ml. The mechanism of HPD action onStaphylococcus is composed of two steps: i) penetration of HPD into the bacterial cell, which may be accomplished in the dark with no harm to the cells; ii) damaging of the bacterial cell upon photoactivation. The photoactivated HPD completely inhibited thymidine incorporation into the bacterial DNA. This effect was accompanied by inhibition of RNA and protein synthesis, which was parallel in extent to the reduction in growth rate. Electron microscopic examination ofS. aureus exposed for 3 h to HPD and light showed the appearance of well-developed mesosomes in the bacterial cells. None of these effects was observed on Gram-negative bacteria.  相似文献   

20.
HPD在胃癌细胞各时相中的转运分布和损伤部位的关系   总被引:1,自引:0,他引:1  
本文探讨了HPD衍生物加红光对人胃低分化腺癌MGC 80-3细胞不同周期的生物学效应。我们观察到HPD的转运与分布决定于细胞周期。G_1期在30分至60分钟内HPD从膜转运至胞质;S、G_2期则直接进入胞质的不同部位;而M期在核部位弥散分布。同步化细胞经HPD加红光处理后,引起细胞大量光敏杀伤,S与G_1期较明显,而M期光敏性最小。我们还观察到:不同周期细胞HPD的分布和HPD的光敏损伤部位密切相关。核仁对HPD的选择性结合也很明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号