首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 798 毫秒
1.
In a search for factors that could contribute to the ability of the plant growth-stimulating Pseudomonas putida WCS358 to colonize plant roots, the organism was analyzed for the presence of genes required for pilus biosynthesis. The pilD gene of Pseudomonas aeruginosa, which has also been designated xcpA, is involved in protein secretion and in the biogenesis of type IV pili. It encodes a peptidase that processes the precursors of the pilin subunits and of several components of the secretion apparatus. Prepilin processing activity could be demonstrated in P. putida WCS358, suggesting that this nonpathogenic strain may contain type IV pili as well. A DNA fragment containing the pilD (xcpA) gene of P. putida was cloned and found to complement a pilD (xcpA) mutation in P. aeruginosa. Nucleotide sequencing revealed, next to the pilD (xcpA) gene, the presence of two additional genes, pilA and pilC, that are highly homologous to genes involved in the biogenesis of type IV pili. The pilA gene encodes the pilin subunit, and pilC is an accessory gene, required for the assembly of the subunits into pili. In comparison with the pil gene cluster in P. aeruginosa, a gene homologous to pilB is lacking in the P. putida gene cluster. Pili were not detected on the cell surface of P. putida itself, not even when pilA was expressed from the tac promoter on a plasmid, indicating that not all the genes required for pilus biogenesis were expressed under the conditions tested. Expression of pilA of P. putida in P. aeruginosa resulted in the production of pili containing P. putida PilA subunits.  相似文献   

2.
D Nunn  S Bergman    S Lory 《Journal of bacteriology》1990,172(6):2911-2919
The polar pili of Pseudomonas aeruginosa are composed of monomers of the pilin structural subunits. The biogenesis of pili involves the synthesis of pilin precursor, cleavage of a six-amino-acid leader peptide, membrane translocation, and assembly of monomers into a filamentous structure extending from the bacterial surface. This report describes three novel genes necessary for the formation of pili. DNA sequences adjacent to pilA, the pilin structural gene, were cloned and mutagenized with transposon Tn5. Each of the insertions were introduced into the chromosome of P. aeruginosa PAK by gene replacement. The effect of the Tn5 insertions in the bacterial chromosome on pilus assembly was assessed by electron microscopy and sensitivity of mutants to a pilus-specific bacteriophage. The resultant mutants were also tested for synthesis and membrane localization of the pilin antigen in order to define the genes required for maturation, export, and assembly of pilin. A 4.0-kilobase-pair region of DNA adjacent to the pilin structural gene was found to be essential for formation of pili. This region was sequenced and found to contain three open reading frames coding for 62-, 38- to 45-, and 28- to 32-kilodalton proteins (pilB, pilC, and pilD, respectively). Three proteins of similar molecular weight were expressed in Escherichia coli from the 4.0-kilobase-pair fragment flanking pilA with use of a T7 promoter-polymerase expression system. The results of the analyses of the three genes and the implications for pilin assembly and maturation are discussed.  相似文献   

3.
Pseudomonas stutzeri lives in terrestrial and aquatic habitats and is capable of natural genetic transformation. After transposon mutagenesis, transformation-deficient mutants were isolated from a P. stutzeri JM300 strain. In one of them a gene which coded for a protein with 75% amino acid sequence identity to PilC of Pseudomonas aeruginosa, an accessory protein for type IV pilus biogenesis, was inactivated. The presence of type IV pili was demonstrated by susceptibility to the type IV pilus-dependent phage PO4, by occurrence of twitching motility, and by electron microscopy. The pilC mutant had no pili and was defective in twitching motility. Further sequencing revealed that pilC is clustered in an operon with genes homologous to pilB and pilD of P. aeruginosa, which are also involved in pilus formation. Next to these genes but transcribed in the opposite orientation a pilA gene encoding a protein with high amino acid sequence identity to pilin, the structural component of type IV pili, was identified. Insertional inactivation of pilA abolished pilus formation, PO4 plating, twitching motility, and natural transformation. The amounts of (3)H-labeled P. stutzeri DNA that were bound to competent parental cells and taken up were strongly reduced in the pilC and pilA mutants. Remarkably, the cloned pilA genes from nontransformable organisms like Dichelobacter nodosus and the PAK and PAO strains of P. aeruginosa fully restored pilus formation and transformability of the P. stutzeri pilA mutant (along with PO4 plating and twitching motility). It is concluded that the type IV pili of the soil bacterium P. stutzeri function in DNA uptake for transformation and that their role in this process is not confined to the species-specific pilin.  相似文献   

4.
5.
The social gliding behaviour of Myxococcus xanthus has previously been associated with the presence of polar pili. A Tn 5 transposon insertion was isolated which introduces a defect in social gliding and is genetically linked to a known sgl locus; this insertion was found also to cause a piliation defect. A 2.7 kb section of DNA was isolated from either side of this transposon and sequenced, revealing three genes which encode amino acid sequences with substantial similarity to components of the Type IV pilus biogenesis pathway in Pseudomonas aeruginosa . The myxococcal pilA gene encodes a putative pilin precursor with a short signal sequence and processing site similar to those of other Type IV pilins. Myxococcal pilS and pilR encode amino acid sequences with similarity to PilS and PilR of P. aeruginosa , as well as to other members of the NtrB/C family of two-component regulators. Mutations within pilR and pilA that have no polar effect were demonstrated to be responsible for pilus and social motility defects. These results indicate that the pili of M. xanthus belong to the Type IV family of pili, and demonstrate that these pili are actually required for social motility.  相似文献   

6.
Pili of Pseudomonas aeruginosa are assembled from monomers of the structural subunit, pilin, after secretion of this protein across the bacterial membrane. These subunits are initally synthesized as precursors (prepilin) with a six-amino-acid leader peptide that is cleaved off during or after membrane traversal, followed by methylation of the amino-terminal phenylalanine residue. This report demonstrates that additional sequences from the N terminus of the mature protein are necessary for membrane translocation. Gene fusions were made between amino-terminal coding sequences of the cloned pilin gene (pilA) and the structural gene for Escherichia coli alkaline phosphatase (phoA) devoid of a signal sequence. Fusions between at least 45 amino acid residues of the mature pilin and alkaline phosphatase resulted in translocation of the fusion proteins across the cytoplasmic membranes of both P. aeruginosa and E. coli strains carrying recombinant plasmids, as measured by alkaline phosphatase activity and Western blotting. Fusion proteins constructed with the first 10 amino acids of prepilin (including the 6-amino-acid leader peptide) were not secreted, although they were detected in the cytoplasm. Therefore, unlike that of the majority of secreted proteins that are synthesized with transient signal sequences, the membrane traversal of pilin across the bacterial membrane requires the transient six-amino-acid leader peptide as well as sequences contained in the N-terminal region of the mature pilin protein.  相似文献   

7.
8.
Vibrio fischeri colonizes the squid Euprymna scolopes in a mutualistic symbiosis. Hatchling squid lack these bacterial symbionts, and V. fischeri strains must compete to occupy this privileged niche. We cloned a V. fischeri gene, designated pilA, that contributes to colonization competitiveness and encodes a protein similar to type IV-A pilins. Unlike its closest known relatives, Vibrio cholerae mshA and vcfA, pilA is monocistronic and not clustered with genes associated with pilin export or assembly. Using wild-type strain ES114 as the parent, we generated an in-frame pilA deletion mutant, as well as pilA mutants marked with a kanamycin resistance gene. In mixed inocula, marked mutants were repeatedly outcompeted by ES114 (P < 0.05) but not by an unmarked pilA mutant, for squid colonization. In contrast, the ratio of mutant to ES114 CFUs did not change during 70 generations of coculturing. The competitive defect of pilA mutants ranged from 1.7- to 10-fold and was more pronounced when inocula were within the range estimated for V. fischeri populations in Hawaiian seawater (200 to 2,000 cells/ml) than when higher densities were used. ES114 also outcompeted a pilA mutant by an average of twofold at lower inoculum densities, when only a fraction of the squid became infected, most by only one strain. V. fischeri strain ET101, which was isolated from Euprymna tasmanica and is outcompeted by ES114, lacks pilA; however, 11 other diverse V. fischeri isolates apparently possess pilA. The competitive defect of pilA mutants suggests that cell surface molecules may play important roles in the initiation of beneficial symbioses in which animals must acquire symbionts from a mixed community of environmental bacteria.  相似文献   

9.
10.
The structural similarity between the pilin glycan and the O-antigen of Pseudomonas aeruginosa 1244 suggested that they have a common metabolic origin. Mutants of this organism lacking functional wbpM or wbpL genes synthesized no O-antigen and produced only non-glycosylated pilin. Complementation with plasmids containing functional wbpM or wbpL genes fully restored the ability to produce both O-antigen and glycosylated pilin. Expression of a cosmid clone containing the O-antigen biosynthetic gene cluster from P. aeruginosa PA103 (LPS serotype O11) in P. aeruginosa 1244 (LPS serotype O7) resulted in the production of strain 1244 pili that contained both O7 and O11 antigens. The presence of the O11 repeating unit was confirmed by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. Expression of the O-antigen biosynthesis cluster from Escherichia coli O157:H7 in strain 1244 resulted in the production of pilin that contained both the endogenous Pseudomonas as well as the Escherichia O157 O-antigens. A role for pilO in the glycosylation of pilin in P. aeruginosa is evident as the cloned pilAO operon produced glycosylated strain 1244 pilin in eight heterologous P. aeruginosa strains. Removal of the pilO gene resulted in the production of unmodified strain 1244 pilin. These results show that the pilin glycan of P. aeruginosa 1244 is a product of the O-antigen biosynthetic pathway. In addition, the structural diversity of the O-antigens used by the 1244 pilin glycosylation apparatus indicates that the glycan substrate specificity of this reaction is extremely low.  相似文献   

11.
In Pseudomonas aeruginosa, most proteins involved in type IVa pilus (T4aP) biogenesis are highly conserved except for the major pilin PilA and the minor pilins involved in pilus assembly. Here we show that each of the five major pilin alleles is associated with a specific set of minor pilins, and unrelated strains with the same major pilin type have identical minor pilin genes. The sequences of the minor pilin genes of strains with group III and V pilins are identical, suggesting that these groups diverged recently through further evolution of the major pilin cluster. Both gene clusters are localized on a single ‘pilin island’ containing putative tRNA recombinational hotspots, and a similar organization of pilin genes was identified in other Pseudomonas species. To address the biological significance of group‐specific differences, cross‐complementation studies using group II (PAO1) and group III (PA14) minor pilins were performed. Heterologous minor pilins complemented twitching motility to various extents except in the case of PilX, which was non‐functional in non‐native backgrounds. A recombinant PA14 strain expressing the PAO1 minor pilins regained motility only upon co‐introduction of the PA14 pilX gene. Comparison of PilX and PilQ secretin sequences from group II, III and V genomes revealed discrete regions of sequence that co‐varied between groups. Our data suggest that changes in PilX sequence have led to compensatory changes in the PilQ secretin monomer such that heterologous PilX proteins are no longer able to promote opening of the secretin to allow pili to appear on the cell surface.  相似文献   

12.
Bacterial surface structures called pili have been studied extensively for their role as possible colonization factors. Most sequenced Vibrio genomes predict a variety of pili genes in these organisms, including several types of type IV pili. In particular, the mannose-sensitive hemagglutinin (MSHA) and the PilA pili, also known as the chitin-regulated pilus (ChiRP), are type IVa pili commonly found in Vibrio genomes and have been shown to play a role in the colonization of Vibrio species in the environment and/or host tissue. Here, we report sequence comparisons of two type IVa pilin subunit genes, mshA and pilA, and their corresponding amino acid sequences, for several strains from the three main human pathogenic Vibrio species, V. cholerae, V. parahaemolyticus, and V. vulnificus. We identified specific groupings of these two genes in V. cholerae, whereas V. parahaemolyticus and V. vulnificus strains had no apparent allelic clusters, and these genes were strikingly divergent. These results were compared with other genes from the MSHA and PilA operons as well as another Vibrio pili from the type IVb group, the toxin co-regulated pilus (TCP) from V. cholerae. Our data suggest that a selective pressure exists to cause these strains to vary their MSHA and PilA pilin subunits. Interestingly, V. cholerae strains possessing TCP have the same allele for both mshA and pilA. In contrast, V. cholerae isolates without TCP have polymorphisms in their mshA and pilA sequences similar to what was observed for both V. parahaemolyticus and V. vulnificus. This data suggests a possible linkage between host interactions and maintaining a highly conserved type IV pili sequence in V. cholerae. Although the mechanism underlying this intriguing diversity has yet to be elucidated, our analyses are an important first step towards gaining insights into the various aspects of Vibrio ecology.  相似文献   

13.
14.
The pilin structural gene of Pseudomonas aeruginosa 1244 was cloned in both cosmids and lambda. Expression of the cloned gene was detected in P. aeruginosa strains PAO2003, PA103, and 653A by an immunoblot reaction utilizing monoclonal antibodies. Western blot analysis showed that pilin expressed from the cloned gene was slightly larger than native 1244 pilin when produced in strains PAO2003 and 653A, but distinctly smaller in PA103. Bacteriophages specific for the 1244 pilus did not lyse strain PAO2003 containing the cloned 1244 pilin gene, indicating that functional 1244 pili were not assembled in this recombinant strain. Nucleotide sequencing revealed a coding region which when translated would produce a 15,615 dalton peptide. The amino-terminal region of this peptide is identical with published pilin sequences. While the rest of the peptides are generally dissimilar, common residues are seen within potentially antigenic regions.  相似文献   

15.
An isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoter was constructed in Myxococcus xanthus. The single-copy pilA gene encodes pilin, the monomer unit of M. xanthus type IV pili. To vary the level of pilA expression, we cloned its promoter in front of the lac operator, and a plasmid containing the construct was inserted into the chromosome of a DeltapilA strain. Induction of pilin expression increased smoothly as the dose of IPTG added to the culture was increased. IPTG-induced pilin rescued S motility of the DeltapilA strain to wild-type levels. The rate of S-motile swarming was found to be proportional to the number of pili (shear-sensitive pilin) produced rather than to the level of total pilin. In fact, S motility was not rescued until the total level of pilin was more than 50% of the wild-type level. This observation implies that a threshold concentration of pilin must be exceeded before the shear-sensitive material (pili) is polymerized in M. xanthus.  相似文献   

16.
17.
18.
Type IV pilin (PilA) is a major constituent of pilus and is required for bacterial biofilm formation, surface motility and virulence. It is known that mature PilA is produced by cleavage of the short leader sequence of the pilin precursor, followed by methylation of N-terminal phenylalanine. The molecular mass of the PilA mature protein from the tobacco bacterial pathogen Pseudomonas syringae pv. tabaci 6605 (Pta 6605) has been predicted to be 12 329 Da from its deduced amino acid sequence. Previously, we have detected PilA as an approximately 13-kDa protein by immunoblot analysis with anti-PilA-specific antibody. In addition, we found the putative oligosaccharide-transferase gene tfpO downstream of pilA. These findings suggest that PilA in Pta 6605 is glycosylated. The defective mutant of tfpO (ΔtfpO) shows reductions in pilin molecular mass, surface motility and virulence towards host tobacco plants. Thus, pilin glycan plays important roles in bacterial motility and virulence. The genetic region around pilA was compared among P. syringae pathovars. The tfpO gene exists in some strains of pathovars tabaci, syringae, lachrymans, mori, actinidiae, maculicola and P. savastanoi pv. savastanoi. However, some strains of pathovars tabaci, syringae, glycinea, tomato, aesculi and oryzae do not possess tfpO, and the existence of tfpO is independent of the classification of pathovars/strains in P. syringae. Interestingly, the PilA amino acid sequences in tfpO-possessing strains show higher homology with each other than with tfpO-nonpossessing strains. These results suggest that tfpO and pilA might co-evolve in certain specific bacterial strains.  相似文献   

19.
Flagella and pili are appendages that modulate attachment of Pseudomonas aeruginosa to solid surfaces. However, previous studies have mostly reported absolute attachment. Neither the dynamic roles of these appendages in surface association nor those of attachment phenotypes have been quantified. We used video microscopy to address this issue. Unworn, sterile, soft contact lenses were placed in a laminar-flow optical chamber. Initial lens association kinetics for P. aeruginosa strain PAK were assessed in addition to lens-surface association phenotypes. Comparisons were made to strains with mutations in flagellin (fliC) or pilin (pilA) or those in flagellum (motAB) or pilus (pilU) function. PAK and its mutants associated with the contact lens surface at a constant rate according to first-order kinetics. Nonswimming mutants associated ~30 to 40 times slower than the wild type. PAK and its pilA mutant associated at similar rates, but each ~4 times faster than the pilU mutant. Lens attachment by wild-type PAK induced multiple phenotypes (static, lateral, and rotational surface movement), each showing only minor detachment. Flagellin (fliC) and flagellar-motility (motAB) mutants did not exhibit surface rotation. Conversely, strains with mutations in pilin (pilA) and pilus retraction (pilU) lacked lateral-surface movement but displayed enhanced surface rotation. Slower surface association of swimming-incapable P. aeruginosa mutants was ascribed to lower convective-diffusion-arrival rates, not to an inability to adhere. Flagellum function (swimming) enhanced lens association, attachment, and rotation; hyperpiliation hindered lens association. P. aeruginosa bound through three different adhesion sites: flagellum, pili, and body. Reduction of bacterial attachment to contact lenses thus requires blockage of multiple adhesion phenotypes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号