首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Peng T  Wang L  Zhou SF  Li X 《Genetica》2010,138(11-12):1231-1240
A number of mutations in GATA4 and NKX2.5 have been identified to be causative for a subset of familial congenital heart defects (CHDs) and a small number of sporadic CHDs. In this study, we evaluated common GATA4 and NKX2.5 mutations in 135 Chinese pediatric patients with non-familial congenital heart defects. Two novel mutations in the coding region of GATA4 were identified, namely, 487C >T (Pro163Ser) in exon 1 in a child with tetralogy of Fallot and 1220C >A (Pro407Gln) in exon 6 in a pediatric patient with outlet membranous ventricular septal defect. We also found 848C >A (Pro283Gln) in exon 2 of the NKX2.5 gene in a pediatric patient with ventricular septal defect, patent ductus arteriosus and aortic isthmus stenosis. None of the mutations was detected in healthy control subjects (n = 114). This study suggests that GATA4 and NKX2.5 missense mutations may be associated with congenital heart defects in pediatric Chinese patients. Further clinical studies with large samples are warranted.  相似文献   

3.
4.
5.
6.
7.

BACKGROUND:

The most common type of congenital heart disease is the cardiac septal defects, which has reported to be caused by a missense mutation (G296S) in exon 3 of the GATA4 gene.

AIMS:

The present study was undertaken to find out whether GATA4 gene is the prime cause of the septal defects in Mysore population.

MATERIALS AND METHODS:

GATA4 gene analyses were undertaken on 21 confirmed CHD cases by PCR and DNA sequencing.

RESULTS AND CONCLUSION:

Analysis of this particular mutation in 21 septal defect patients revealed that none of the patients had the mutation, indicating that this mutation is population specific or septal defect in Mysore population is caused due to mutations in other regions of the GATA4 gene.  相似文献   

8.
9.
Holt-Oram syndrome (HOS) is a specific developmental defect involving upper limb malformations and cardiac defects. Mutations in the TBX5 gene, located on chromosome 12q24.1, were demonstrated as the underlying molecular defect in several families with this disorder. We report on two unrelated families with HOS. Affected members of both families have the same truncation mutation in exon 5 of the TBX5 gene (Y136X). This mutation has not been reported before in HOS. The spectrum of defects is similar in both families, displaying an ASD, hypoplastic deltoid muscles and hypoplastic or absent thumbs extending to radial defects in one case. So far, only a single genotype-phenotype analysis in HOS has been done which is not sufficient to explain the high inter- and intrafamilial variability of expression. Our observation further supports that the position of the mutation in the TBX5 gene is related to the phenotype expression of HOS.  相似文献   

10.
11.

Background  

The tbx5 mutation in human causes Holt-Oram syndrome, an autosomal dominant condition characterized by a familial history of congenital heart defects and preaxial radial upper-limb defects. We report aberrant apoptosis and dormant cell growth over head, heart, trunk, fin, and tail of zebrafish embryos with tbx5 deficiency correspond to the dysmorphogenesis of tbx5 morphants.  相似文献   

12.
为探讨人类单纯性先天性心脏病患者中TBX5基因表达下调的可能原因, 应用变性高效液相色谱(DHPLC)方法检测100例单纯性先天性心脏病患者中TBX5基因上游1 200 bp调控区的突变情况; 应用甲基化敏感性限制性内切酶(MS-RE)法检测50例单纯性先天性心脏病患者和5例非先天性心脏病患者心肌组织TBX5基因启动子区两个CpG岛(转录起始点上游-49~-188 bp和-247~-464 bp处)的甲基化情况; 应用P-match软件预测小鼠Tbx5基因上游转录因子Nkx2-5的结合位点, 构建Nkx2-5表达载体转染小鼠H9C2(2-1)心肌细胞, RT-PCR及Western blotting检测Tbx5基因表达, 凝胶阻滞实验(EMSA)验证Nkx2-5和Tbx5基因的作用。结果在100例单纯性先天性心脏病患者中, 未检测到TBX5基因上游1 200 bp调控区突变; 非先天性心脏病患者和单纯性先天性心脏病患者在两个CpG岛存在相同的甲基化; 小鼠Tbx5基因转录起始点上游-312~-315 bp可能存在Nkx2-5的结合位点, 转染Nkx2-5表达载体后Tbx5基因在mRNA及蛋白质水平均有表达增高趋势, Nkx2-5在体外可以与Tbx5基因上游-312~-315 bp序列相结合。以上结果提示TBX5基因调控区突变和两个CpG岛的甲基化不是单纯性先天性心脏病患者心肌组织中TBX5基因表达下调的原因, TBX5基因表达下调可能由于NKX2-5的表达异常引起。  相似文献   

13.
14.
15.
Heart formation is a complex morphogenetic process, and perturbations in cardiac morphogenesis lead to congenital heart disease. NKX2-5 is a key causative gene associated with cardiac birth defects, presumably because of its essential roles during the early steps of cardiogenesis. Previous studies in model organisms implicate NKX2-5 homologs in numerous processes, including cardiac progenitor specification, progenitor proliferation, and chamber morphogenesis. By inhibiting function of the zebrafish NKX2-5 homologs, nkx2.5 and nkx2.7, we show that nkx genes are essential to establish the original dimensions of the linear heart tube. The nkx-deficient heart tube fails to elongate normally: its ventricular portion is atypically short and wide, and its atrial portion is disorganized and sprawling. This atrial phenotype is associated with a surplus of atrial cardiomyocytes, whereas ventricular cell number is normal at this stage. However, ventricular cell number is decreased in nkx-deficient embryos later in development, when cardiac chambers are emerging. Thus, we conclude that nkx genes regulate heart tube extension and exert differential effects on ventricular and atrial cell number. Our data suggest that morphogenetic errors could originate during early stages of heart tube assembly in patients with NKX2-5 mutations.  相似文献   

16.
Holt-Oram syndrome (HOS) is a developmental disorder inherited in an autosomal-dominant pattern. Affected organs are the heart and forelimbs with upper extremity skeletal defects and congenital heart malformation. In this study we present three cases of HOS in the same family. In one of these three individuals we detected a transition of C to T (CTG-GTT, V205V) in exon 7 of the TBX5 gene. This nucleotide change causes no amino acid change and potential pathologic effects remain unknown.Key Words: Holt-Oram syndrome, Congenital heart malformation, TBX5 gene  相似文献   

17.
E-peptide of the pro-insulin-like growth factor (pro-IGF)-I is produced by proteolytic cleavage of the pro-hormone in post-translational processing. Introduction of a transgene encoding a secreted form of rtEa4- or hEb-peptide into newly fertilized zebrafish (Danio rerio) eggs by electroporation or microinjection resulted in embryos with abnormal cardiovascular features and reduced red blood cells and vasculature. Two different phenocopies of heart developmental defects were observed: (i) Group I embryos exhibited heart development arrested at the heart muscle stage and (ii) group II embryos exhibited heart development arrested at the heart tube stage. Both groups of embryos also exhibited reduction of red blood cells and vasculature. The mRNA levels of genes essential for heart development (GATA 5 and NKX2.5), hematopoiesis (GATA 1 and GATA 2), and vasculogenesis (VEGF) in normal and defective embryos were determined by quantitative real-time RT-PCR at 36 hr post-fertilization (hpf). Significant reduction of GATA 5, NKX2.5, GATA 1, GATA 2, and VEGF mRNA levels was observed in both groups of defective embryos. These results suggest that overexpression of rtEa4 or hEb transgene in zebrafish embryos disrupts heart development, hematopoiesis, and vasculogenesis by reducing the levels of GATA 5, NKX2.5, GATA 1, GATA 2, and VEGF mRNA.  相似文献   

18.
19.

Background

A Lebanese Maronite family presented with 13 relatives affected by various congenital heart defects (mainly atrial septal defects), conduction tissue anomalies and midline defects. No mutations were found in GATA4 and NKX2-5.

Methods and Results

A set of 399 poly(AC) markers was used to perform a linkage analysis which peaked at a 2.98 lod score on the long arm of chromosome 15. The haplotype analysis delineated a 7.7 meganucleotides genomic interval which included the alpha-cardiac actin gene (ACTC1) among 36 other protein coding genes. A heterozygous missense mutation was found (c.251T>C, p.(Met84Thr)) in the ACTC1 gene which changed a methionine residue conserved up to yeast. This mutation was absent from 1000 genomes and exome variant server database but segregated perfectly in this family with the affection status. This mutation and 2 other ACTC1 mutations (p.(Glu101Lys) and p.(Met125Val)) which result also in congenital heart defects are located in a region in close apposition to a myosin heavy chain head region by contrast to 3 other alpha-cardiac actin mutations (p.(Ala297Ser),p.(Asp313His) and p.(Arg314His)) which result in diverse cardiomyopathies and are located in a totally different interaction surface.

Conclusions

Alpha-cardiac actin mutations lead to congenital heart defects, cardiomyopathies and eventually midline defects. The consequence of an ACTC1 mutation may in part be dependent on the interaction surface between actin and myosin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号