首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
We have tested the functional compatibility between rev protein of human immunodeficiency virus type I (HIV-I) and rex protein of human T-cell lymphotropic virus type I (HTLV-I). Each protein recognized the other's cis-acting sequence, albeit at reduced levels. Both proteins localize predominantly in the nucleolus. We have identified a new nucleolar-targeting signal in rev protein, which was homologous to that of rex protein. The sequence [35-RQARRNRRRRWRERQR-50] in rev protein, when fused to the amino-terminus of beta-galactosidase, directed the hybrid protein to the cell nucleolus. A deletion mutant which lacks several amino acid residues within the signal failed to function in the CAT assay system. These results demonstrate that the nucleolar targeting signals are essential for the functions of Rev and Rex.  相似文献   

3.
4.
The human T-cell leukemia virus type I rex gene product plays a critical role in the expression of the retroviral structural proteins Gag and Env from incompletely spliced mRNAs. Rex protein acts through a cis element (rex-response element [RxRE]) which is located in the U3/R region of the 3' long terminal repeat and is present on all human T-cell leukemia virus type I-specific mRNAs. Two domains of the predicted secondary structure of the RxRE are crucially important for Rex action in vivo as measured by two assay systems. In vitro studies using highly purified recombinant Rex protein revealed a specific and direct interaction with radiolabeled RxRE sequences. The correlation between our in vivo results and the direct binding of Rex protein to mutant and wild-type RxRE sequences supports both the existence of the predicted secondary structure and the importance of this direct interaction with the cis-acting RNA sequence for Rex function in vivo.  相似文献   

5.
The effect of rev-responsive element deletion on human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) gene expression was examined. The phenotypes of HIV-1 and HIV-2 provirus DNAs lacking the rev-responsive element, as determined by transfection experiments, were indistinguishable from those of virus DNAs carrying rev gene mutations. By using rev-response elements derived from these two viruses, we developed two monitoring systems to evaluate the functionality of HIV-1 rev, HIV-2 rev, and human T-lymphotropic virus type I rex. In both systems, HIV-1 rev and human T-lymphotropic virus type I rex transactivated HIV-2 very efficiently. On the contrary, HIV-2 rev and human T-lymphotropic virus type I rex were poor activators of HIV-1. No functional replacement of rex by HIV-2 rev was observed.  相似文献   

6.
The Rex regulatory proteins of human T-cell leukemia virus type I (HTLV-I) and bovine leukemia virus (BLV), and the Rev protein of human immunodeficiency virus type 1 (HIV-1), promote the cytoplasmic accumulation and translation of viral messenger mRNAs encoding structural proteins. Rev and Rex act through cis-acting elements on the viral RNA; these elements are named Rev- and Rex-responsive elements, or RRE and RXRE, respectively. We show that the Rex proteins of HTLV-I and BLV are interchangeable, but only the Rex protein of HTLV-I can substitute for Rev of HIV-1. Rex of HTLV-I and Rev of HIV-1 appear to act on RRE by similar mechanisms. Rev of HIV-1 does not act on the RXRE of HTLV-I or BLV. The nonreciprocal action of Rev and Rex suggests that these factors interact directly with the cis-acting RNA elements of the two viruses.  相似文献   

7.
A simian virus 40 late replacement vector encoding human immunodeficiency virus type 1 (HIV-1) gp120 (pGP120) was used to define a region within the HIV-2 genome that could work as a rev-responsive element (RRE). Our previous work showed that gp120 expression in this system required a functional RRE in cis and required the rev protein in trans (M.-L. Hammarskj?ld, J. Heimer, B. Hammarskj?ld, I. Sangwan, L. Albert, and D. Rekosh, J. Virol. 63:1959-1966, 1989). Using pGP120, we first mapped an RRE to a 1,042-base-pair (bp) Sau3a fragment in the env region of HIV-2. Both HIV-1 rev (rev1) and HIV-2 rev (rev2) could work in conjunction with this fragment. Further mapping showed that a 272-bp subfragment within the 1,042-bp region was sufficient as an RRE. Surprisingly, the smaller fragment worked only with the rev1 protein and not with its homologous rev2 protein. In addition, the rev2 protein failed to function together with the RRE from HIV-1. We also utilized this system to examine the ability of the rex genes of human T-cell leukemia virus types I and II to functionally substitute for rev. These experiments showed that complementation by both the rexI and rexII proteins required the presence of an RRE. The rex proteins worked well in conjunction with either the HIV-1 or the HIV-2 RRE (the 1,042-bp as well as the 272-bp fragment).  相似文献   

8.
9.
P L Green  Y M Xie    I S Chen 《Journal of virology》1991,65(1):546-550
The Rex proteins of human T-cell leukemia virus types I and II (HTLV-I and HTLV-II) induce cytoplasmic expression of unspliced gag-pol mRNA and singly spliced env mRNA and are critical for virus replication. Two rex gene products, p27rex and p21rex of HTLV-I and p26rex and p24rex of HTLV-II, have been detected in HTLV-infected cells; however, the structural and biological relationship of the proteins has not been clearly elucidated. Endoproteinase digestion and phosphoamino acid analysis of HTLV-II Rex indicated that p24rex has the same amino acid backbone as p26rex and that the larger apparent molecular size of p26rex is attributable to serine phosphorylation.  相似文献   

10.
11.
P L Green  M T Yip  Y Xie    I S Chen 《Journal of virology》1992,66(7):4325-4330
The Rex protein of human T-cell leukemia virus types I (HTLV-I) and II (HTLV-II) regulates the expression of the viral structural genes and is critical for viral replication. Rex acts by specifically binding to RNAs containing sequences of the R region of the 5' long terminal repeat. Two forms of Rex detected in HTLV-II-infected cells, p26rex and p24rex, differ in the extent of serine phosphorylation. Two-dimensional phosphopeptide analysis indicates that p26rex is extensively phosphorylated at multiple sites. Using a sensitive immunobinding assay, we show that the phosphorylation state of Rex determines the efficiency of binding of Rex to HTLV-II target RNAs. Thus, the phosphorylation state of Rex in the infected cell may be a switch that determines whether virus exists in a latent or productive state. These studies also suggest that phosphorylation of RNA-binding regulatory proteins is a more general mechanism of gene regulation.  相似文献   

12.
Two chimeric mutant genes derived from rev of human immunodeficiency virus type 1 and rex of human T-cell leukemia virus type I were constructed to investigate the functions of the nucleolar-targeting signals (NOS) in Rev and Rex proteins. A chimeric Rex protein whose NOS region was substituted with the NOS of Rev was located predominantly in the cell nucleolus and functioned like the wild-type protein in the Rex assay system. However, a chimeric Rev with the NOS of Rex abolished Rev function despite its nucleolar localization. This nonfunctional nucleolar-targeting chimeric protein inhibited the function of both Rex and Rev. In the same experimental conditions, this mutant interfered with the localization of the functional Rex in the nucleolus.  相似文献   

13.
14.
15.
A molecular clone of the simian immunodeficiency virus SIVSMM isolate PBj14, lacking the ATG initiation codon for Rev protein (PBj-1.5), did not produce virus or large unspliced or singly spliced viral RNA upon transfection of HeLa cells. Low but significant levels of virus and large viral RNA production were observed upon transfection of PBj-1.5 into HeLa Rev cells expressing the rev gene of human immunodeficiency virus type 1. Furthermore, abundant virus and large viral RNA production occurred upon transfection of PBj-1.5 into HeLa Rex cells expressing the rex gene of human T-cell leukemia virus type I. Virus produced from HeLa Rex and HeLa Rev transfections was infectious, produced large amounts of virus, and was cytopathic for Rex-producing MT-4 cells. In contrast, no or only low levels of virus production were observed upon infection of H9 cells. These studies show that a defective SIV rev gene can be transcomplemented with human immunodeficiency virus type 1 Rev and with high efficiency by human T-cell leukemia virus type I Rex, and they suggest that rev-defective viruses could serve as a source for production of a live attenuated SIV vaccine.  相似文献   

16.
The human T-cell leukemia viruses (HTLVs) encode a trans-regulatory protein, Rex, which differentially regulates viral gene expression by controlling the cytoplasmic accumulation of viral mRNAs. Because of insufficient amounts of purified protein, biochemical characterization of Rex activity has not previously been performed. Here, utilizing the baculovirus expression system, we purified HTLV type II (HTLV-II) Rex from the cytoplasmic fraction of recombinant baculovirus-infected insect cells by heparin-agarose chromatography. We directly demonstrated that Rex specifically bound HTLV-II 5' long terminal repeat RNA in both gel mobility shift and immunobinding assays. Sequences sufficient for Rex binding were localized to the R-U5 region of the HTLV-II 5' long terminal repeat and correlate with the region required for Rex function. The human immunodeficiency virus type 1 (HIV-1), has an analogous regulatory protein, Rev, which directly binds to and mediates its action through the Rev-responsive element located within the HIV-1 env gene. We demonstrated that HTLV-II Rex rescued an HIV-1JR-CSF Rev-deficient mutant, although inefficiently. This result is consistent with a weak binding activity to the HIV-1 Rev-responsive element under conditions in which it efficiently bound the HTLV-II long terminal repeat RNA.  相似文献   

17.
We have analyzed the action of the Rev and Tev proteins of human immunodeficiency virus type 1 (HIV-1) and of the Rex protein of human T-cell leukemia virus type I (HTLV-I) on a series of Rev-responsive element (RRE) mutants. The minimum continuous RRE region necessary and sufficient for Rev function was determined to be 204 nucleotides. Interestingly, this region was not sufficient for Tev or Rex function. These proteins require additional sequences, which may stabilize the structure of the RRE or may contain additional sequence-specific elements. Internal RRE deletions revealed that the targets for Rev and Rex can be separated, since mutants responding to Rev and not Rex and vice versa were identified. Tev was active on both types of mutants, suggesting that it has a more relaxed specificity than do both Rev and Rex proteins. Although Rev and Rex targets within the RRE appear to be distinct, the trans-dominant mutant RevBL prevents the RRE interaction with Rex. RevBL cannot inhibit the function of Rex on RRE deletions that lack the Rev-responsive portion. These results indicate the presence of distinct sites within the RRE for interaction with these proteins. The binding sites for the different proteins do not function independently and may interfere with one another. Mutations affecting the RRE may change the accessibility and binding characteristics of the different binding sites.  相似文献   

18.
The interaction of the human immunodeficiency virus type 1 (HIV-1) Rev protein with a structured region in env mRNA (the Rev-responsive element [RRE]) mediates the export of structural mRNAs from the nucleus to the cytoplasm. We demonstrated that unlike HIV-1 Rev, which functions with both the HIV-1 and HIV-2 RREs, HIV-2 Rev functions only with the HIV-2 RRE. Rev-RRE binding studies suggested that the lack of nonreciprocal complementation stems from the inability of HIV-2 Rev to interact with HIV-1 RRE RNA. Maintenance of RNA secondary structure, rather than the primary nucleotide sequence, appeared to be the major determinant for interaction of both HIV-1 and HIV-2 Rev with the HIV-2 RRE. Moreover, the binding domain of the HIV-2 RRE recognized by HIV-1 Rev was dissimilar to the binding domain of the HIV-1 RRE, in terms of both secondary structure and primary nucleotide sequence. Our results support the hypothesis that function of HIV Rev proteins and possibly the functionally similar Rex proteins encoded by the human T-cell leukemia viruses (HTLVs) HTLV-I and HTLV-II is controlled by the presence of RNA secondary structure generated within the RRE RNA.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus type I (HTLV-I) were purified by sucrose density gradient centrifugation in the presence of 1 mM EDTA. Pelleted gradient fractions were analyzed for total protein, total Gag capsid protein, and total zinc. Zinc was found to copurify and concentrate with the virus particles. Through successive cycles of resuspending in buffer containing EDTA and repelleting, the zinc content remained constant at about 1.7 mol of zinc per mol of Gag protein. Proteins from purified virus (HIV-1 and HTLV-I) were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, blotted to polyvinylidene fluoride paper, and probed with 65ZnCl2. Viral nucleocapsid (NC) proteins (HIV-1 p7NC and HTLV-I p15NC) bound 65Zn2+. Other retroviruses, including simian immunodeficiency virus, equine infectious anemia virus, bovine leukemia virus, Moloney murine leukemia virus, mouse mammary tumor virus, and Mason-Pfizer monkey virus, were found to contain amounts of zinc per milligram of total protein similar to those found in HIV-1 and HTLV-I. Collectively, these data support the hypothesis that retroviral NC proteins function as zinc finger proteins in mature viruses.  相似文献   

20.
Rex-dependent nucleolar accumulation of HTLV-I mRNAs   总被引:8,自引:0,他引:8  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号