首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P L Green  Y M Xie    I S Chen 《Journal of virology》1991,65(1):546-550
The Rex proteins of human T-cell leukemia virus types I and II (HTLV-I and HTLV-II) induce cytoplasmic expression of unspliced gag-pol mRNA and singly spliced env mRNA and are critical for virus replication. Two rex gene products, p27rex and p21rex of HTLV-I and p26rex and p24rex of HTLV-II, have been detected in HTLV-infected cells; however, the structural and biological relationship of the proteins has not been clearly elucidated. Endoproteinase digestion and phosphoamino acid analysis of HTLV-II Rex indicated that p24rex has the same amino acid backbone as p26rex and that the larger apparent molecular size of p26rex is attributable to serine phosphorylation.  相似文献   

2.
3.
4.
The function of the human T-cell leukemia virus (HTLV) Rex phosphoprotein is to increase the level of the viral structural and enzymatic gene products expressed from the incompletely spliced viral RNAs containing the Rex-responsive element. The phosphorylation of HTLV type 2 Rex (Rex-2), predominantly on serine residues, correlates with an altered conformation, as detected by a gel mobility shift, and is required for specific binding to its viral RNA target sequence. Thus, the phosphorylation state of Rex in the infected cell may be a switch that determines whether the virus exists in a latent or a productive state. A mutational analysis of Rex-2 that focused on serine and threonine residues was performed to identify regions or domains within Rex-2 important for function, with a specific emphasis on identifying Rex-2 phosphorylation mutants. We identified mutations near the carboxy terminus that disrupted a novel region or domain and abrogated Rex-2 function. Mutant M17 (with S151A and S153A mutations) displayed reduced phosphorylation that correlated with reduced function. Replacement of both serine residues 151 and 153 with phosphomimetic aspartic acid restored Rex-2 function and locked Rex-2 in a phosphorylated active conformation. A mutant containing threonine residues at positions 151 and 153 displayed a phenotype indistinguishable from that of wild-type Rex. Furthermore, this same mutant showed increased threonine phosphorylation and decreased serine phosphorylation, providing conclusive evidence that one or both of these residues are phosphorylated in vivo. Our results provide the first direct evidence that the phosphorylation of Rex-2 is important for function. Further understanding of HTLV Rex phosphorylation will provide insight into the regulatory control of HTLV replication and ultimately the pathobiology of HTLV.  相似文献   

5.
6.
The human T-cell leukemia virus type II (HTLV-II) regulatory protein Rex augments cytoplasmic levels of unspliced gag-pol mRNA by acting through a Rex-responsive element (RxRE) in the long terminal repeat. Purified Rex protein binds to long terminal repeat mRNA. Here, using an immunobinding assay to measure the binding of Rex protein to mutated RxRE RNAs, we show that efficient Rex binding requires a stem-bulge-loop RNA secondary structure (nucleotides [nt] 465 to 500) and specific sequences both within the stem-bulge (nt 470 to 476) and within a conserved upstream splice donor site (nt 449 to 455). Rex function in a transient transfection expression system correlates with Rex protein-RxRE RNA binding. The ability of HTLV-II Rex to interact directly with the HTLV-II splice donor site suggests that HTLV-II Rex may increase expression of unspliced gag-pol mRNA, in part, by inhibiting splicing.  相似文献   

7.
The human T-cell leukemia viruses (HTLVs) encode a trans-regulatory protein, Rex, which differentially regulates viral gene expression by controlling the cytoplasmic accumulation of viral mRNAs. Because of insufficient amounts of purified protein, biochemical characterization of Rex activity has not previously been performed. Here, utilizing the baculovirus expression system, we purified HTLV type II (HTLV-II) Rex from the cytoplasmic fraction of recombinant baculovirus-infected insect cells by heparin-agarose chromatography. We directly demonstrated that Rex specifically bound HTLV-II 5' long terminal repeat RNA in both gel mobility shift and immunobinding assays. Sequences sufficient for Rex binding were localized to the R-U5 region of the HTLV-II 5' long terminal repeat and correlate with the region required for Rex function. The human immunodeficiency virus type 1 (HIV-1), has an analogous regulatory protein, Rev, which directly binds to and mediates its action through the Rev-responsive element located within the HIV-1 env gene. We demonstrated that HTLV-II Rex rescued an HIV-1JR-CSF Rev-deficient mutant, although inefficiently. This result is consistent with a weak binding activity to the HIV-1 Rev-responsive element under conditions in which it efficiently bound the HTLV-II long terminal repeat RNA.  相似文献   

8.
9.
10.
11.
12.
13.
Expression of the human T-cell leukemia virus type I (HTLV-I) rex gene is a prerequisite for the expression of the retroviral structural proteins. We have generated internal deletion mutants of this 27-kDa nucleolar trans-acting gene product to define functional domains in the Rex protein. The phenotype of the various mutant proteins was tested on the homologous HTLV-I rex response element sequence and the heterologous human immunodeficiency virus type 1 (HIV-1) rev response element sequence. Our results indicate that a region between amino acid residues 55 and 132 in the 189-amino-acid Rex protein is required for Rex-mediated trans activation on both retroviral response element sequences. In addition, substitution of the Rex nuclear localization signal by a sequence of the HIV-1 rev gene product targets the Rex protein to the correct subcellular compartment required for Rex function.  相似文献   

14.
D McDonald  T J Hope    T G Parslow 《Journal of virology》1992,66(12):7232-7238
The human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type I Rex proteins induce cytoplasmic expression of incompletely spliced viral mRNAs by binding to these mRNAs in the nucleus. Each protein binds a specific cis-acting element in its target RNAs. Both proteins also associated with nucleoli, but the significance of this association is uncertain because mutations that inactivate nucleolar localization signals in Rev or Rex also prevent RNA binding. Here we demonstrate that Rev and Rex can function when tethered to a heterologous RNA binding site by a bacteriophage protein. Under these conditions, cytoplasmic accumulation of unspliced RNA occurs without the viral response elements, mutations in the RNA binding domain of Rev do not inhibit function, and nucleolar localization can be shown to be unnecessary for the biological response.  相似文献   

15.
16.
17.
A molecular clone of the simian immunodeficiency virus SIVSMM isolate PBj14, lacking the ATG initiation codon for Rev protein (PBj-1.5), did not produce virus or large unspliced or singly spliced viral RNA upon transfection of HeLa cells. Low but significant levels of virus and large viral RNA production were observed upon transfection of PBj-1.5 into HeLa Rev cells expressing the rev gene of human immunodeficiency virus type 1. Furthermore, abundant virus and large viral RNA production occurred upon transfection of PBj-1.5 into HeLa Rex cells expressing the rex gene of human T-cell leukemia virus type I. Virus produced from HeLa Rex and HeLa Rev transfections was infectious, produced large amounts of virus, and was cytopathic for Rex-producing MT-4 cells. In contrast, no or only low levels of virus production were observed upon infection of H9 cells. These studies show that a defective SIV rev gene can be transcomplemented with human immunodeficiency virus type 1 Rev and with high efficiency by human T-cell leukemia virus type I Rex, and they suggest that rev-defective viruses could serve as a source for production of a live attenuated SIV vaccine.  相似文献   

18.
19.
20.
The human T-cell leukemia virus type I rex gene product plays a critical role in the expression of the retroviral structural proteins Gag and Env from incompletely spliced mRNAs. Rex protein acts through a cis element (rex-response element [RxRE]) which is located in the U3/R region of the 3' long terminal repeat and is present on all human T-cell leukemia virus type I-specific mRNAs. Two domains of the predicted secondary structure of the RxRE are crucially important for Rex action in vivo as measured by two assay systems. In vitro studies using highly purified recombinant Rex protein revealed a specific and direct interaction with radiolabeled RxRE sequences. The correlation between our in vivo results and the direct binding of Rex protein to mutant and wild-type RxRE sequences supports both the existence of the predicted secondary structure and the importance of this direct interaction with the cis-acting RNA sequence for Rex function in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号