首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most RNA viruses remodel the endomembrane network to promote virus replication, maturation, or egress. Rearrangement of cellular membranes is a crucial component of viral pathogenesis. The PVX TGBp2 protein induces vesicles of the granular type to bud from the endoplasmic reticulum network. Green fluorescent protein (GFP) was fused to the PVX TGBp2 coding sequence and inserted into the viral genome and into pRTL2 plasmids to study protein subcellular targeting in the presence and absence of virus infection. Mutations were introduced into the central domain of TGBp2, which contains a stretch of conserved amino acids. Deletion of a 10-amino-acid segment (m2 mutation) overlapping the segment of conserved residues eliminated the granular vesicle and inhibited virus movement. GFP-TGBp2m2 proteins accumulated in enlarged vesicles. Substitution of individual conserved residues in the same region similarly inhibited virus movement and caused the mutant GFP-TGBp2 fusion proteins to accumulate in enlarged vesicles. These results identify a novel element in the PVX TGBp2 protein which determines vesicle morphology. In addition, the data indicate that vesicles of the granular type induced by TGBp2 are necessary for PVX plasmodesmata transport.  相似文献   

2.
Expression of the Tomato yellow leaf curl virus-China (TYLCV-C) C2 protein and green fluorescent protein (GFP) fused to the C2 protein (C2-GFP) in Nicotiana benthamiana from a Potato virus X (PVX) vector induced necrotic ringspots on inoculated leaves as well as necrotic vein banding and severe necrosis on systemically infected leaves. The localization of GFP fluorescence in plant cells infected with PVX/C2-GFP and in insect cells transfected with Baculovirus expressing C2-GFP indicates that the TYLCV-C C2 protein is capable of shuttling GFP into plant and insect cell nuclei. Our data demonstrate that the TYLCV-C C2 protein may contribute to viral pathogenicity in planta and is nuclear localized.  相似文献   

3.
In the present study we examined the trafficking pathways of connexin49 (Cx49) fused to green fluorescent protein (GFP) in polar and non-polar cell lines. The Cx49 gene was isolated from ovine lens by RT-PCR. Cx49 cDNA was fused to GFP and the hybrid cDNA was transfected into several cell lines. After transfection of Cx49-GFP cDNA into HeLa cells, it was shown using the double whole-cell patch-clamp technique that the expressed fusion protein was still able to form conducting gap junction channels. Synthesis, assembly, and turnover of the Cx49-GFP hybrid protein were investigated using a pulse-chase protocol. A major 78-kDa protein band corresponding to Cx49-GFP could be detected with a turnover of 16-20 h and a half-life time of 10 h. The trafficking pathways of Cx49-GFP were monitored by confocal laser microscopy. Fusion proteins were localized in subcellular compartments, including the endoplasmic reticulum (ER), the ER-Golgi intermediate compartment, the Golgi apparatus, and the trans-Golgi network, as well as vesicles traveling towards the plasma membrane. Time-dependent sequential localization of Cx49-GFP in the ER and then the Golgi apparatus supports the notion of a slow turnover of Cx49-GFP compared to other connexins analyzed so far. Gap junction plaques resembling the usual punctuate distribution pattern could be demonstrated for COS-1 and MDCK cells. Basolateral distribution of Cx49-GFP was observed in polar MDCK cells, indicating specific sorting behavior of Cx49 in polarized cells. Together, this report describes the first characterization of biosynthesis and trafficking of lens Cx49.  相似文献   

4.
The 25K, 12K, and 8K proteins and coat protein (CP) of Potato virus X (PVX) are required for virus cell-to-cell movement. In this study, experiments were conducted to determine whether the PVX 25K protein moves cell to cell and to explore potential interactions between the PVX 25K, 12K, and 8K proteins and CP. The PVX 25K gene was fused to the green fluorescent protein (GFP) gene and inserted into plasmids adjacent to the cauliflower mosaic virus 35S promoter. These plasmids were introduced by biolistic bombardment to transgenic tobacco expressing the PVX 12K, 8K, and CP genes. The GFP:25K fused proteins moved cell to cell on nontransgenic tobacco and tobacco expressing either the 12K or 8K proteins. However, the GFP:25K proteins did not move on transgenic tobacco expressing the combined 12K/8K genes or the CP gene. Thus, movement of the PVX 25K protein through plasmodesmata may be regulated by interactions with other PVX proteins.  相似文献   

5.
Jellyfish green fluorescent protein as a reporter for virus infections   总被引:34,自引:5,他引:29  
The gene encoding green fluorescent protein (GFP) of Aequorea victoria was introduced into the expression cassette of a virus vector based on potato virus X (PVX). Host plants of PVX inoculated with PVX.GFP became systemically infected. Production of GFP in these plants was detected initially between 1 and 2 days postinoculation by the presence of regions on the inoculated leaf that fluoresced bright green under UV light. Subsequently, this green fluorescence was evident in systemically infected tissue. The fluorescence could be detected by several methods. The simplest of these was by looking at the UV-illuminated plants in a darkened room. The PVX.GFP-infected tissue has been analysed either by epifluorescence or confocal laser scanning microscopy. These microscopical methods allow the presence of the virus to be localized to individual infected cells. It was also possible to detect the green fluorescence by spectroscopy or by electrophoresis of extracts from infected plants. To illustrate the potential application of this reporter gene in virological studies a derivative of PVX.GFP was constructed in which the coat protein gene of PVX was replaced by GFP. Confocal laser scanning microscopy of the inoculated tissue showed that the virus was restricted to the inoculated cells thereby confirming earlier speculation that the PVX coat protein is essential for cell-to-cell movement. It is likely that GFP will be useful as a reporter gene in transgenic plants as well as in virus-infected tissue.  相似文献   

6.
7.
Recent evidence suggests that biosynthesis of the human heart Na+ channel (hH1) protein is rapidly modulated by sympathetic interventions. However, data regarding the intracellular processing of hH1 in vivo are lacking. In this study we sought to establish a model that would allow us to study the subcellular localization of hH1 protein. Such a model could eventually help us to better understand the trafficking of hH1 in vivo and its potential role in cardiac conduction. We labeled the C-terminus of hH1 with the green fluorescent protein (GFP) and compared the expression of this construct (hH1-GFP) and hH1 in transfected HEK293 cells. Fusion of GFP to hH1 did not alter its electrophysiological properties. Confocal microscopy revealed that hH1-GFP was highly expressed in intracellular membrane structures. Immuno-electronmicrographs showed that transfection of hH1-GFP and hH1 induced proliferation of three types of endoplasmic reticulum (ER) membranes to accommodate the heterologously expressed proteins. Labeling with specific markers for the ER and the Golgi apparatus indicated that the intracellular channels are almost exclusively retained within the ER. Immunocytochemical labeling of the Na+ channel in dog cardiomyocytes showed strong fluorescence in the perinuclear region of the cells, a result consistent with our findings in HEK293 cells. We propose that the ER may serve as a reservoir for the cardiac Na+ channels and that the transport from the ER to the Golgi apparatus is among the rate-limiting steps for sarcolemmal expression of Na+ channels.  相似文献   

8.
Previously we have shown that encapsidated potato virus X (PVX) RNA was nontranslatable in vitro, but could be converted into a translatable form by binding of the PVX-coded movement protein (termed TGBp1) to one end of a polar helical PVX virion. We reported that binding of TGBp1 to coat protein (CP) subunits located at one extremity of the helical particles induced a linear destabilization of the CP helix, which was transmitted along the whole particle. Two model structures were used: (i) native PVX and (ii) artificial polar helical PVX-like particles lacking intact RNA (PVX(RNA-DEG)). Binding of TGBp1 to the end of either of these particles led to their destabilization, but no disassembly of the CP helix occurred. Influence of additional factors was required to trigger rapid disassembly of TGBp1-PVX and TGBp1-PVX(RNA-DEG) complexes. Thus: (i) no disassembly was observed unless TGBp1-PVX complex was translated. A novel phenomenon of TGBp1-dependent, ribosome-triggered disassembly of PVX was described: initiation of translation and few translocation steps were needed to trigger rapid (and presumably cooperative) disassembly of TGBp1-PVX into protein subunits and RNA. Importantly, the whole of the RNA molecule (including its 3'-terminal region) was released. The TGBp1-induced linear destabilization of CP helix was reversible, suggesting that PVX in TGBp1-PVX complex was metastable; (ii) entire disassembly of the TGBp1-PVX(RNA-DEG) complex (but not of the TGBp1-free PVX(RNA-DEG) particles) into 2.8S subunits was triggered under influence of a centrifugal field. To our knowledge, transmission of the linear destabilization along the polar helical protein array induced by a foreign protein binding to the end of the helix represents a novel phenomenon. It is tempting to suggest that binding of TGBp1 to the end of the PVX CP helix induced conformational changes in terminal CP subunits that can be linearly transferred along the whole helical particle, i.e. that intersubunit conformational changes may be transferred along the CP helix.  相似文献   

9.
 Aquaporin 2 (AQP2) transfected into LLC-PK1 cells functions as a vasopressin-regulated water channel that recycles between intracellular vesicles and the plasma membrane upon vasopressin stimulation. The green fluorescent protein (GFP) of the jellyfish, Aequorea victoria, was used as an autofluorescent tag to monitor AQP2 trafficking in transfected LLC-PK1 cells. Two chimeras were constructed, one in which GFP was fused to the amino-terminus of AQP2 [GFP-AQP2(NT)] and the second in which it was fused to the carboxyl-terminus [AQP2-GFP(CT)]. The GFP-AQP2(NT) chimera trafficked in a regulated pathway from intracellular vesicles to the basolateral plasma membrane in response to vasopressin or forskolin stimulation of cells. In contrast, the AQP2-GFP(CT) chimera expressed in LLC-PK1 cells was localized constitutively on both apical and basolateral plasma membranes. The cellular location of this chimera was not modified by vasopressin or forskolin. Thus, while the GFP-AQP2(NT) chimera will be useful to study AQP2 trafficking in vitro, the abnormal, constitutive membrane localization of the AQP2-GFP(CT) chimera suggests that one or more trafficking signals exist on the carboxyl-terminus of the AQP2 protein. Accepted: 8 April 1998  相似文献   

10.
The impact of turnip mosaic virus (TuMV) infection on the endomembranes of the host early secretory pathway was investigated using an infectious clone that has been engineered for tagging viral membrane structures with a fluorescent protein fused to the viral protein 6K(2). TuMV infection led to the amalgamation of the endoplasmic reticulum (ER), Golgi apparatus, COPII coatamers, and chloroplasts into a perinuclear globular structure that also contained viral proteins. One consequence of TuMV infection was that protein secretion was blocked at the ER-Golgi interface. Fluorescence recovery after photobleaching (FRAP) experiments indicated that the perinuclear structure cannot be restocked in viral components but was dynamically connected to the bulk of the Golgi apparatus and the ER. Experiments with 6K(2) fused to photoactivable green fluorescent protein (GFP) showed that production of motile peripheral 6K(2) vesicles was functionally linked to the perinuclear structure. Disruption of the early secretory pathway did not prevent the formation of the perinuclear globular structure, enhanced the clustering of peripheral 6K(2) vesicles with COPII coatamers, and led to inhibition of cell-to-cell virus movement. This suggests that a functional secretory pathway is not required for the formation of the TuMV perinuclear globular structure and peripheral vesicles but is needed for successful viral intercellular propagation.  相似文献   

11.
Recently we have reported that a selective binding of potato virus X (PVX)-coded movement protein (termed TGBp1 MP) to one end of a polar coat protein (CP) helix converted viral RNA into a translatable form and induced a linear destabilization of the whole helical particle. Here, the native PVX virions, RNase-treated (PVX(RNA-DEG)) helical particles lacking intact RNA and their complexes with TGBp1 (TGBp1-PVX and TGBp1-PVX(RNA-DEG)), were examined by atomic force microscopy (AFM). When complexes of the TGBp1 MP with PVX were examined by means of AFM in liquid, no structural reorganization of PVX particles was observed. By contrast, the products of TGBp1-dependent PVX degradation termed "beads-on-string" were formed under conditions of AFM in air. The AFM images of PVX(RNA-DEG) were indistinguishable from images of native PVX particles; however, the TGBp1-dependent disassembly of the CP-helix was triggered when the TGBp1-PVX(RNA-DEG) complexes were examined by AFM, regardless of the conditions used (in air or in liquid). Our data supported the idea that binding of TGBp1 to one end of the PVX CP-helix induced linear destabilization of the whole helical particle, which may lead to its disassembly under conditions of AFM.  相似文献   

12.
This paper summarizes some structural characteristics of Potato virus X (PVX), the flexuous filamentous plant potexvirus. A model of PVX coat protein (CP) tertiary structure in the virion proposed on the basis of tritium planigraphy combined with predictions of the protein tertiary structure is described. A possible role of glycosylation and phosphorylation in the CP structure and function is discussed. Two forms of PVX virion disassembly are discussed: (i) the virion co-translational disassembly after PVX CP in situ phosphorylation and (ii) disassembly of PVX triggered by different factors after linear destabilization of the virion by binding of the PVX-coded movement protein (TGBp1) to one end of the polar CP-helix. Special emphasis was placed on a translational activation of encapsidated PVX RNA and rapid disassembly of TGBp1-PVX complexes into free RNA and CP. The results of experiments on the PVX CP repolymerization and PVX reconstitution are considered. In particular, the products assembled from PVX RNA, CP and TGBp1 were examined. Single-tailed particles were found with a helical, head-like structure consisting of helically arranged CP subunits located at the 5'-tail of RNA; the TGBp1 was bound to the end of the head. Translatable 'RNA-CP-TGBp1' complexes may represent the transport form of the PVX infection.  相似文献   

13.
Kang BH  Staehelin LA 《Protoplasma》2008,234(1-4):51-64
Plant Golgi stacks are mobile organelles that can travel along actin filaments. How COPII (coat complex II) vesicles are transferred from endoplasmic reticulum (ER) export sites to the moving Golgi stacks is not understood. We have examined COPII vesicle transfer in high-pressure frozen/freeze-substituted plant cells by electron tomography. Formation of each COPII vesicle is accompanied by the assembly of a ribosome-excluding scaffold layer that extends approximately 40 nm beyond the COPII coat. These COPII scaffolds can attach to the cis-side of the Golgi matrix, and the COPII vesicles are then transferred to the Golgi together with their scaffolds. When Atp115-GFP, a green fluorescent protein (GFP) fusion protein of an Arabidopsis thaliana homolog of the COPII vesicle-tethering factor p115, was expressed, the GFP localized to the COPII scaffold and to the cis-side of the Golgi matrix. Time-lapse imaging of Golgi stacks in live root meristem cells demonstrated that the Golgi stacks alternate between phases of fast, linear, saltatory movements (0.9-1.25 microm/s) and slower, wiggling motions (<0.4 microm/s). In root meristem cells, approximately 70% of the Golgi stacks were connected to an ER export site via a COPII scaffold, and these stacks possessed threefold more COPII vesicles than the Golgi not associated with the ER; in columella cells, only 15% of Golgi stacks were located in the vicinity of the ER. We postulate that the COPII scaffold first binds to and then fuses with the cis-side of the Golgi matrix, transferring its enclosed COPII vesicle to the cis-Golgi.  相似文献   

14.
In seed plants aspartic proteases (APs) are known to reside in storage vacuoles. Targeting to this compartment is provoked by a secretory signal peptide and the plant-specific insert (PSI). In order to study secretory and vacuolar targeting in a seedless plant, the moss Physcomitrella patens, we isolated a cDNA encoding PpAP1, a novel aspartic proteinase. Sequence alignment with other members of the family of plant APs (EC 3.4.23) revealed a high overall identity and the Pfam motifs for aspartic proteinase and PSI were clearly recognised. In phylogenetic analysis PpAP1 was placed at a very basal position outside of the bigger clusters. Protoplasts transiently expressing the PpAP1 signal peptide fused to GFP showed fluorescence in a well-developed ER-Golgi network. A C-terminal fusion of GFP to the entire PpAP1 protein showed vacuolar fluorescence in transiently transfected protoplasts. Therefore, the vacuole is apparently the in-vivo target for PpAP1. In this study the three-dimensional peculiarity of the endomembrane continuum of ER and Golgi was visualised in a seedless plant for the first time. Above all the functionality of the secretory and the vacuolar targeting signals make them become useful tools for biotechnological approaches.  相似文献   

15.
Several lines of evidence support a novel model for Golgi protein residency in which these proteins cycle between the Golgi apparatus and the endoplasmic reticulum (ER). However, to preserve the functional distinction between the two organelles, this pool of ER-resident Golgi enzymes must be small. We quantified the distribution for two Golgi glycosyltransferases in HeLa cells to test this prediction. We reasoned that best-practice, quantitative solutions would come from treating images as data arrays rather than pictures. Using deconvolution and computer calculated organellar boundaries, the Golgi fraction for both endogenous beta1,4-galactosyltransferase and UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase 2 fused with green fluorescent protein (GFP) was 91% by fluorescence microscopy. Immunogold labeling followed by electron microscopy and model analysis yielded a similar value. Values reflect steady-state conditions, as inclusion of a protein synthesis inhibitor had no effect. These data strongly suggest that the fluorescence of a GFP chimera with an organellar protein can be a valid indicator of protein distribution and more generally that fluorescent microscopy can provide a valid, rapid approach for protein quantification. In conclusion, we find the ER pool of cycling Golgi glycosyltransferases is small and approximately 1/100 the concentration found in the Golgi apparatus.  相似文献   

16.
Fusions between the green fluorescent protein (GFP) and the Cauliflower mosaic virus (CaMV) movement protein (MP) induce the formation of fluorescent foci and surface tubules in Arabidopsis thaliana leaf mesophyll protoplasts. Tubules elongate coordinately and progressively in an assembly process approximately 6 to 12 h following transfection of protoplasts with GFP-MP constructs. Tubules are not formed in protoplasts transfected by GFP-MP(ER2A), a MP mutation that renders CaMV noninfectious. A small number of short tubules are formed on protoplasts transfected by GFP-MP(N6) and GFP-MP(N13), two second-site revertants of ER2A that partially restore infectivity. Protoplasts cotransfected with cyan fluorescent protein (CFP)-MP(WT) and GFP-MP(ER2A) form tubules containing both MP fusions, indicating that although the GFP-MP(ER2A) cannot induce tubule formation, GFP-MP(ER2A) can coassemble or colocalize with CFP-MP(WT) in tubules. Thus, CaMV MP-induced tubule formation in protoplasts correlates closely with the infectivity of mutation ER2A and its revertants, suggesting that tubule-forming capacity in plant protoplasts reflects a process required for virus infection or movement.  相似文献   

17.
A fusion protein (beta-arrestin-1-green fluorescent protein (GFP)) was constructed between beta-arrestin-1 and a modified form of the green fluorescent protein from Aequorea victoria. Expression in HEK293 cells allowed immunological detection of an 82-kDa cytosolic polypeptide with antisera to both beta-arrestin-1 and GFP. Transient expression of this construct in HEK293 cells stably transfected to express the rat thyrotropin-releasing hormone receptor-1 (TRHR-1) followed by confocal microscopy allowed its visualization evenly distributed throughout the cytoplasm. Addition of thyrotropin-releasing hormone (TRH) caused a profound and rapid redistribution of beta-arrestin-1-GFP to the plasma membrane followed by internalization of beta-arrestin-1-GFP into distinct, punctate, intracellular vesicles. TRH did not alter the cellular distribution of GFP transiently transfected into these cells nor the distribution of beta-arrestin-1-GFP following expression in HEK293 cells lacking the receptor. To detect potential co-localization of the receptor and beta-arrestin-1 in response to agonist treatment, beta-arrestin-1-GFP was expressed stably in HEK293 cells. A vesicular stomatitis virus (VSV)-tagged TRHR-1 was then introduced transiently. Initially, the two proteins were fully resolved. Short term exposure to TRH resulted in their plasma membrane co-localization, and sustained exposure to TRH resulted in their co-localization in punctate, intracellular vesicles. In contrast, beta-arrestin-1-GFP did not relocate or adopt a punctate appearance in cells that did not express VSV-TRHR-1. Reciprocal experiments were performed, with equivalent results, following transient expression of beta-arrestin-1 into cells stably expressing VSVTRHR-1-GFP. These results demonstrate the capacity of beta-arrestin-1-GFP to interact with the rat TRHR-1 and directly visualizes their recruitment from cytoplasm and plasma membrane respectively into overlapping, intracellular vesicles in an agonist-dependent manner.  相似文献   

18.
To determine the requirements for viral proteins exiting the phloem, transgenic plants expressing green fluorescent protein (GFP) fused to the Potato virus X (PVX) triple gene block (TGB)p1 and coat protein (CP) genes were prepared. The fused genes were transgenically expressed from the companion cell (CC)-specific Commelina yellow mottle virus (CoYMV) promoter. Transgenic plants were selected for evidence of GFP fluorescence in CC and sieve elements (SE) and proteins were determined to be phloem mobile based on their ability to translocate across a graft union into nontransgenic scions. Petioles and leaves were analyzed to determine the requirements for phloem unloading of the fluorescence proteins. In petioles, fluorescence spread throughout the photosynthetic vascular cells (chlorenchyma) but did not move into the cortex, indicating a specific barrier to proteins exiting the vasculature. In leaves, fluorescence was mainly restricted to the veins. However, in virus-infected plants or leaves treated with a cocktail of proteasome inhibitors, fluorescence spread into leaf mesophyll cells. These data indicate that PVX contributes factors which enable specific unloading of cognate viral proteins and that proteolysis may play a role in limiting proteins in the phloem and surrounding chlorenchyma.  相似文献   

19.
The role of the actin cytoskeleton in plant development is intimately linked to its dynamic behavior. Therefore it is essential to continue refining methods for studying actin organization in living plant cells. The discovery of green fluorescent protein (GFP) has popularized the use of translational fusions of GFP with actin filament (F-actin) side-binding proteins to visualize in vivo actin organization in plants. The most recent of these live cell F-actin reporters are GFP fusions to the actin-binding domain 2 (ABD2) of Arabidopsis fimbrin 1 (ABD2-GFP). To improve ABD2-GFP fluorescence for enhanced in vivo F-actin imaging, transgenic Arabidopsis plants were generated expressing a construct with GFP fused to both the C- and N-termini of ABD2 under the control of the CaMV 35S promoter (35S::GFP-ABD2-GFP). The 35S::GFP-ABD2-GFP lines had significantly increased fluorescence compared with the original 35S::ABD2-GFP lines. The enhanced fluorescence of the 35S::GFP-ABD2-GFP-expressing lines allowed the acquisition of highly resolved images of F-actin in different plant organs and stages of development because of the reduced confocal microscope excitation settings needed for data collection. This simple modification to the ABD2-GFP construct presents an important tool for studying actin function during plant development.  相似文献   

20.
Golgi inheritance during cell division involves Golgi disassembly but it remains unclear whether the breakdown product is dispersed vesicles, clusters of vesicles or a fused ER/Golgi network. Evidence against the fused ER/Golgi hypothesis was previously obtained from subcellular fractionation studies, but left concerns about the means used to obtain and disrupt mitotic cells. Here, we performed velocity gradient analysis on otherwise untreated cells shaken from plates 9 h after release from an S-phase block. In addition, we used digitonin and freeze/thaw permeabilization as alternatives to mechanical homogenization. Under each of these conditions, approximately 75% of the Golgi was recovered in a population of small vesicles that lacked detectable ER. We also used multilabel fluorescent microscopy with optical sectioning by deconvolution to compare the 3D metaphase staining pattern of endogenous Golgi and ER markers. Although both ER and Golgi staining were primarily diffuse, only the ER was excluded from the mitotic spindle region. Surprisingly, only 2% of the Golgi fluorescence was present as resolvable structures previously characterized as vesicle clusters. These were not present in the ER pattern. Significantly, a portion of the diffuse Golgi fluorescence, presumably representing dispersed 60-nm vesicles, underwent an apparent rapid aggregation with the larger Golgi structures upon treatments that impaired microtubule integrity. Therefore, mitotic Golgi appears to be in a dynamic equilibrium between clustered and free vesicles, and accurate partitioning may be facilitated by microtubule-based motors acting on the clusters to insure random and uniform distribution of the vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号