首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The effect of light on NO3 utilization was investigatedin non-nodulated soybean (Clycine max L. Merr., cv. Kingsoy)plants during a 14/10 h light/dark period at a constant temperatureof 26C. A 30–50% decrease of net NO3 uptake ratewas observed 2–6 h after the lights were turned off. Thiswas specifically due to an inhibition of NO3 influx asmeasured by 15N incorporation during 5 min. The absolute valuesof NO3 efflux depended on whether the labelling protocolinvolved manipulation of the plants or not, but were not affectedby illumination of the shoots. Darkness had an even more markedeffect in lowering the reduction of 15NO3 in both rootsand shoots, as well as xylem transport of 15NO3 and reduced15N. Concurrently with this slowing down of transport and metabolicprocesses, accumulations of NO3 and Asn were significantlystimulated in roots during the dark period. These data are discussedin view of the hypothesis that darkness adversely affects NO3uptake through specific feedback control, in response to alterationsin the later steps of N utilization which are more directlydependent on light. Key words: Glycine max, light/dark cycles, nitrate uptake, nitrate reduction  相似文献   

2.
According to the Dijkshoorn-Ben Zioni model, NO3 uptakein the roots is stimulated by NO3 assimilation in theshoots, through downward phloem transport of malate synthesizedin response to reduction of NO2 to NH3. In this paper,one hypothesis resulting from this model was tested, i.e. thatthe diurnal changes in NO3 uptake are due to the lightdependence of NO3 reduction in the leaves. This dependencewas studied in detached leaves transferred to deionized wateror supplied via the transpiration stream with similar amountsof 15NO3 in light or darkness. In the dark, the reductionof previously stored NO3 or xylem-borne 15NO3was generally about 40–50% of that measured in the light.Glucose supply to the detached leaves stimulated NO3reduction in the dark, but not enough to increase it up to thesame rate as in the light. Nitrite reduction in detached leaveswas much less affected by darkness, and could be maintainedat a high level by exogenous supply of substrate. Advantagewas taken from this last observation to sustain NO2reductionin attached darkened shoots at the same rate as in the light,by ensuring an appropriate delivery of NO2 from the xylem.Although this was assumed to restore the light level of theassociated synthesis of malate, it led to a marked inhibitionof NO3 uptake. In addition, the direct supply of malateto the shoots or to the roots failed to prevent the decreaseof NO3 uptake in darkness. Thus, our conclusion is thatthe mechanisms evoked in the Dijkshoorn-Ben Zioni model do notplay an important role in the diurnal variations of NO3uptake in soybean plants. Key words: Glycine max, light/dark cycle, malate synthesis, NO3 reduction, NO3 uptake  相似文献   

3.
The processes of NO3 uptake and transport and the effectsof NH4+ or L-glutamate on these processes were investigatedwith excised non-mycorrhizal beech (Fagus sylvatica L.) roots.NO3 net uptake followed uniphasic Michaelis-Menten kineticsin a concentration range of 10µM to 1 mM with an apparentKm of 9.2 µM and a Vmax of 366 nmol g–1 FW h–1.NH4+, when present in excess to NO3, or 10 mM L-glutamateinhibited the net uptake of NO3 Apparently, part of NO3taken up was loaded into the xylem. Relative xylem loading ofNO3 ranged from 3.21.6 to 6.45.1% of NO3 netuptake. It was not affected by treatment with NH4+ or L-glutamate.16N/13N double labelling experiments showed that NO3efflux from roots increased with increasing influx of NO3and, therefore, declined if influx was reduced by NH4+ or L-glutamateexposure. From these results it is concluded that NO3net uptake by non-mycorrhizal beech roots is reduced by NH4+or L-glutamate at the level of influx and not at the level ofefflux. Key words: Nitrate transport, net uptake, influx, efflux, ammonium, Fagus, Fagaceae  相似文献   

4.
The growth of four heathland species, two grasses (D. flexuosa,M. caerulea) and two dwarf shrubs (C. vulgaris, E. tetralix),was tested in solution culture at pH 4.0 with 2 mol m–3N, varying the N03/NH4+ ratio up to 40% nitrate. In addition,measurements of NRA, plant chemical composition, and biomassallocation were carried out on a complete N03/NH4+ replacementseries up to 100% nitrate. With the exception of M. caerulea, the partial replacement ofNH4+ by NO3 tended to enhance the plant's growth ratewhen compared to NH4+ only. In contrast to the other species,D. flexuosa showed a very flexible response in biomass allocation:a gradual increase in the root weight ratio (RWR) with NO3increasing from 0 to 100%. In the presence of NH4+, grassesreduced nitrate in the shoot only; roots did not become involvedin the reduction of nitrate until zero ambient NH4+. The dwarfshrubs, being species that assimilate N exclusively in theirroots, displayed an enhanced root NRA in the presence of nitrate;in contrast to the steady increase with increasing NO3in Calluna roots, enzyme activity in Erica roots followed arather irregular pattern. Free nitrate accumulated in the tissuesof grasses only, and particularly in D. flexuosa. The relative uptake ratio for NO3 [(proportion of nitratein N uptake)/(proportion of nitrate in N supply)] was lowestin M. caerulea and highest in D. flexuosa. Whereas M. caeruleaand the dwarf shrubs always absorbed ammonium highly preferentially(relative uptake ratio for NO3 <0.20), D. flexuosashowed a strong preference for NO3 at low external nitrate(the relative uptake ratio for N03 reaching a value of2.0 at 10% NO3). The ecological significance of thisprominent high preference for NO3 at low NO3/NH4+ratio by D. flexuosa and its consequences for soil acidificationare briefly discussed. Key words: Ammonium, heathland lants, N03/NH4+ ratio, nitrate, nitrate reductase activity, soil acidification, specific absorption rate  相似文献   

5.
The short-term dependence of NO3 uptake upon photosynthesisand sugar supply to the roots of soybean plants was investigatedin a series of experiments where CO2 availability, light intensityor conduction of phloem sap to the roots were severely limited.Removal of CO2 from the atmosphere or girdling of the stem equallyprevented the stimulation of NO3 uptake when plants weretransferred from darkness to the light. The effect of thesetwo treatments can be reversed by CO2 re-supply or by additionof 10 mM glucose in the nutrient solution, respectively. Glucosewas also more effective in stimulating NO3 uptake byintact plants in darkness than in light. Collectively, theseobservations are interpreted as evidence that the diurnal changesin NO3 uptake are due to decreased phloem transport ofphotosynthates in darkness. Accordingly, the magnitude of thesechanges was much dependent on starch accumulation in the leavesat the end of the photo-period. Shading the plants lowered thisaccumulation, and resulted in an amplification of the diurnalchanges in NO3 uptake. These results are discussed inconnection with the hypothesis that the carbon-dependent plasticityof the night/day ratio of NO3 uptake is an importantfeature of the co-ordination of the acquisition of N and C bythe plant. Key words: Glycine max, light/dark cycle, NO3 uptake, C and N acquisition  相似文献   

6.
We have examined the long-term effects of NO3 concentrationson NO3 (15NO3) fluxes and cellular pool sizesin roots of intact 30-d-old wheat (Triticum aestivum cv. Courtot)grown hydroponically. Compartmental analysis was performed understeady-state conditions at five different levels of NO3concentration (from 0.1 up to 5 mol m–3 taking into accountmetabolism and secretion into the xylem (Devienne et al., 1994).Nitrate and reduced nitrogen levels in the tissues were largelyindependent of external NO3 concentration although below1.5 mol m–3 NO3; concentration limited plant growth.In the chamber, marked diurnal variations in net uptake occurredand, in the light, higher NO3 concentrations yieldedhigher NO3 uptake rates. After transfer of the plantsto the laboratory, the increase in net uptake linked to elevationof NO3; concentrations was even larger (from 0.1 to 8.8µmolh–1 g–1 FW) as a result of a marked increase (x10–11) in the unidirectional influx at the plasmalemmawhile NO3 efflux was less enhanced (x 4–5). Underthese conditions, influx into the vacuole was also higher (x2–4) while efflux from the vacuole was little affected(x 1–3). NO3 concentrations within the cell compartmentswere estimated under the clas sical assumptions. The vacuolarconcentration was a little modified by NO3 availabilitywhereas that in the cytosol increased from about 10 mol m–3to about 20 mol m–3 indicating that (1) the absolute valuefor the cytosol was high and (2) it displayed only a small increasedespite very large changes in NO3 fluxes. NO3distribution within the cells did not seem to involve an activeaccumulation of NO3 in the vacuole. Key words: Wheat, ion transport, nitrate, 15N, compartmentation  相似文献   

7.
Barley plants were grown in nutrient solution at two contrastingnitrate concentrations to produce plants of low or high nitrogen(N) status. Leaves were then exposed continuously to either0.3 mm3 dm–3 NO2 or clean air, with the roots and rootingmedium isolated from the polluted air. Uptake of NO2 was measuredin two ways; as depletion from an air stream containing thegas and using 15N-labelled NO2. Results from the two methodsagreed well and demonstrated that the flux of NO2 into the leavesof N-deficient barley was lower than that of N-sufficient plants.Nevertheless, the relative contribution of15N derived from 15NO2to the N status of the plant was greater in the plants suppliedwith low nitrate. A major factor in regulating NO2 uptake bybarley leaves appeared to be stomatal conductance, althoughinternal conductance may also be involved. The effects of NO2exposure of barley on carbon dioxide exchange rates, transpirationand water vapour conductance were also influenced by the N statusof the plant. Key words: Hordeum vulgare, 15N-labelled NO2, carbon dioxide exchange, transpiration  相似文献   

8.
Three-month-old Carrizo citrange (hybrid of Citrus sinensisL. OsbeckxPoncirus trifoliata Blanco) seedlings were grown incontrolled environment chambers in pots of fine sand. Plantswere irrigated with either non-saline or saline solutions overa 3-week period. After these treatments, plants were transferredto vessels containing a 5 m M15NO3K (96% atom excess15N) solution,and transpiration as well as concentration of15N and Cl-in roots,stem and leaves were measured after 24 h. Transpiration and15NO3-uptakerates were inhibited after exposure to NaCl and the concentrationof salt pre-treatment determined the intensity of this inhibitoryeffect. To determine the effect of transpiration on NO3-absorption,net15NO3-uptake rate was measured in salt stressed and non-stressedplants exposed to different light intensities or relative humiditiesand also in detached roots. Reduction in NO3-uptake was moreclosely related to Cl-antagonism from salt stress than to reducedtranspiration rate. Copyright 1999 Annals of Botany Company Nitrate, absorption, inhibition transport system, salt, light and humidity.  相似文献   

9.
Two approaches to quantifying relationships between nutrientsupply and plant growth were compared with respect to growth,partitioning, uptake and assimilation of NO3 by non-nodulatedpea (Pisum sativum L. cv. Marma). Plants grown in flowing solutionculture were supplied with NO3 at relative addition rates(RAR) of 0·03, 0·06, 0·12, and 0·18d–1, or constant external concentrations ([NO3)of 3, 10, 20, and 100 mmol m–3 over 19 d. Following acclimation,relative growth rates (RGR)approached the corresponding RARbetween 0·03–0.12 d-1, although growth was notlimited by N supply at RAR =0.18 d-1. Growth rates showed littlechange with [NO3–] between 10–100 mmol m–3(RGR=0·15 –0·16 d-1). The absence of growthlimitation over this range was suggested by high unit absorptionrates of NO3, accumulation of NO3 in tissues andprogressive increases in shoot: root ratio. Rates of net uptakeof NO3 from 1 mol m–3 solutions were assessed relativeto the growth-related requirement for NO3, showing thatthe relative uptake capacity increased with RGR between 0·03–0·06d–1 , but decreased thereafter to a theoretical minimumvalue at RGR  相似文献   

10.
The seminal roots of N-free-grown barley seedlings were ableto take up NO3 immediately upon initial exposure; theuptake rate in the tip was half of that in the older root zones(middle and base). A lag of 60 min was required in all rootzones before the uptake rates started to increase during inductionwith external NO3. This increase could be prevented bythe addition of pFPA; we thus assume that additional NO3transport proteins were synthesized during NO3 induction.During the time-course of NO3 induction different uptakerates were measured in morphologically different regions ofthe tip (1 mm segments) indicating a regulation of NO3induction on a narrow local scale. In NO3 grown plants, NO3 uptake as well as NO3content increased basipetally along the root axis concomitantlywith increasing vacuolization of the cells. Although NO3uptake into the tip was only half of that into the older rootzones, this NO3 uptake was very important for the entireroot. Firstly, it provided the substrate for protein biosynthesisin the meristematic region: nitrate reductase activity and totalsoluble protein were highest in the first apical mm of the tip.Secondly, 3% of the NO3 taken up by the tip was foundin the base where it induced NO3 uptake: NO3 wastranslocated almost exclusively basipetally and as little as20nmolg1 root fr. wt. translocated from the tip weresufficient for acceleration of NO3 induction in the rootbase of N-free-grown plants. This clearly shows that the inductionof NO3 uptake does not depend exclusively on the availabilityof external NO3, but can be mediated also with internallytranslocated NO3.The root tip, therefore, may be consideredthe NO3 sensing region of the root. Key words: Barley, Hordeum vulgare L, internal NO3, NO3 uptake, root zones  相似文献   

11.
Compartmental analyses of intact roots of barley (Hordeum vulgareL. cv. Klondike) plants, grown with different levels of NO3(up to 1·0 mol m–3) in the external media, wereundertaken using 13NO3. Two additional treatments, namelysodium dodecyl sulphate (SDS) or brief exposure to high temperature,designed to investigate the identity of the three NO3compartments revealed by compartmental analyses, provided supportfor the identification of the latter as corresponding to superficialsolution, apoplasm, and cytoplasm. Half-lives for exchange ofthese compartments, 3 s, 30 s, and 7 mm, were unaffected bythe level of NO3 provided during growth. Independentestimates of 13NO3 fluxes obtained by direct methodsagreed well with values of fluxes calculated from the compartmentalanalyses. Cytoplasmic [NO3], estimated from the compartmental analyses,were in the range from 1–37 mol m–3, and increasedwith increasing [NO3] of the medium. Such values forcytoplasmic [NO3] are inconsistent with an earlier proposal(Siddiqi, Glass, Ruth, and Rufty, 1990; Glass, Siddiqi, Ruth,and Rufty, 1990) of passive NO3 uptake in the concentrationrange above 10 mol m–3. A model, based upon localizeddistribution of nitrate reductase activity in epidermal cells,is proposed in which the proposed passive low affinity NO uptakeat high external [NO3] is restricted to epidermal cells. During loading periods with 13NO3, significant amountsof 13N were translocated to the shoot. Two pools of 13N, onebeing the root symplasm, appear to participate in the transferof labelled N to the shoot. Key words: Barley, compartmentation, nitrate, nitrate reductase, 13N  相似文献   

12.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown as simulated swards for 71 d in flowing nutrientsolutions with roots at 11 C and shoots at 20/15 C, day/night,under natural illumination. Root temperatures were then changedto 3, 5, 7, 11, 13, 17 or 25 C and the total N2, fixation over21 d was measured in the absence of a supply mineral N. Alltreatments were subsequently supplied with 10 mmol m–2NO2 in the flowing solutions for 14 d, and the relativeuptake of N by N2, fixation and NO3 uptake was compared.Net uptake of K+ was measured on a daily basis. Root temperature had little effect on root d. wt over the 35-dexperimental period, but shoot d. wt increased by a factor of3.5 between 3 and 25 C, with the sharpest increase occurringat 7–11 C. Shoot: root d. wt ratios increased from 25to 68 with increasing temperature at 7–25 C. N2-fixationper plant (in the absence of NO2 ) increased with roottemperature at 3–13C, but showed little change above13 C. The ratios of N2 fixation: NO2 uptake over 14d (mol N: mol N) were 0.47–0.77 at 3–7 C, 092–154at 11–17 C, and 046 at 25 C, reflecting the dominanceof NO3 uptake over N2 fixation at extremes of high andlow root temperature. The total uptake of N varied only slightlyat 11–25 –C (095–110 mmol N plant–1),the decline in N2 fixation as root temperature increased above11 C was compensated for by the increase in NO 3 uptake.The % N in shoot dry matter declined with decreasing root temperature,from 32% at 13 C to 15% at 3 C. In contrast, concentrationsof N expressed on a shoot water content basis showed a modestdecrease with increasing temperature, from 345 mol m–3at 3 C to 290 mol m–3 at 25 C. Trifolium repens L, white clover, root temperature, N2 fixation, potassium uptake, nitrate uptake, flowing solution culture  相似文献   

13.
Nitrate provision has been found to regulate the capacity forChara corallina cells to take up nitrate. When nitrate was suppliedto N sufficient cells maximum nitrate uptake was reached after8 h. Prolonged treatment of the cells in the absence of N alsoresulted in the apparent ability of these cells to take up nitrate.Chlorate was found to substitute partially for nitrate in the‘induction’ step. The effects on nitrate reductionwere separated from those on nitrate uptake by experiments usingtungstate. Tungstate pretreatment had no effect on NO3uptake ‘induced’ by N starvation, but inhibitedNO3 uptake associated with NO3 pretreatment. Chloridepretreatment similarly had no effect on NO3 uptake ‘induced’by N deprivation, but inhibited NO3 uptake followingNO3 pretreatment. The data suggest that there are atleast two mechanisms responsible for the ‘induction’of nitrate uptake by Chara cells, one associated with NO3reduction and ‘induced’ by CIO3 or NO3and one associated with N deprivation. Key words: Nitrate, Chlorate, Chara corallina, Induction  相似文献   

14.
Ten-day old kidney bean plants (Phaseolus vulgaris L. cv. Shin-edogawa)were exposed to 2.0 and 4–0 parts 10–6 NO2, and0.1, 0.2, and 0.4 parts 10–6 O3 alone or in combinationfor 2, 4, and 7 d. The effects of these air pollutants wereexamined with respect to the growth, partitioning of assimilates,nitrogen uptake, soluble sugar content, and root respiration. Decreased dry matter production was significant with all treatmentsexcept 2.0 parts 10–6 NO2 and 0.1 parts 10–6 O3.Exposure to mixtures of the gases produced more severe suppressionof growth than exposure to the single gases. Root/shoot ratiowas significantly lowered at 7 d by the gas treatments otherthan 2.0 parts 10–6 NO2 and 0.1 parts 10–6 O3. Thetotal nitrogen content of plants was increased by all treatments;the higher percent of nitrogen found with O3 exposure will resultfrom the growth retardation which increases the concentrationof nitrogen in the plants because the absorption of nitrogenby roots was unaffected. The combination of O3 with NO2 significantlydecreased the assimilation of NO2 by the plants. The concentration of soluble sugars in roots was decreased bythe gas treatments. There was a strong positive correlationbetween soluble sugar content and dry weight of the roots harvestedat 7 d. Root respiration was relatively unchanged until 5 dand then decreased significantly at 7 d by 2.0 parts 10–6NO2 and 0–2 parts 10–6 O3. Retarded growth of theroots and the decreased root respiration may be due to diminishedtranslocation of sugars from leaves to roots caused by exposureto air pollutants. The uptake of soil nitrogen was not closelyrelated with root respiration in the case of O3 exposure. Key words: NO2, O3, Phaseolus vulgaris, Growth, Sugars, Root respiration  相似文献   

15.
Macduff, J. H., Hopper, M. J. and Wild, A. 1987. The effectof root temperature on growth and uptake of ammonium and nitrateby Brassica napus L. CV. Bien venu in flowing solution culture.II. Uptake from solutions containing NH4NO3.—J. exp. Bot.38: 53–66 The effects of root temperature on uptake and assimilation ofNH4+ and NO3 by oilseed rape (Brassica napus L. CV. Bienvenu) were examined. Plants were grown for 49 d in flowing nutrientsolution at pH 6?0 with root temperature decrementally reducedfrom 20?C to 5?C; and then exposed to different root temperatures(3, 5, 7, 9, 11, 13, 17 or 25?C) held constant for 14 d. Theair temperature was 20/15?C day/night and nitrogen was suppliedautomatically to maintain 10 mmol m–3 NH4NO3 in solution.Total uptake of nitrogen over 14 d increased threefold between3–13?C but was constant above 13?C. Net uptake of NH4+exceeded that of NO3 at all temperatures except 17?C,and represented 47–65% of the total uptake of nitrogen.Unit absorption rates of NH4+ and of 1?5–2?7 for NO3suggested that NO3 absorption was more sensitive thanNH4+ absorption to temperature. Rates of absorption were relativelystable at 3?C and 5?C compared with those at 17?C and 25?C whichincreased sharply after 10 d. Tissue concentration of N in theshoot, expressed on a fresh weight basis, was independent ofroot temperature throughout, but doubled between 3–25?Cwhen expressed on a dry weight basis. The apparent proportionof net uptake of NO3 that was assimilated was inverselyrelated to root temperature. The results are used to examinethe relation between unit absorption rate adn shoot:root ratioin the context of short and long term responses to change ofroot temperature Key words: Brassica napus, oilseed rape, root temperature, nitrogen uptake  相似文献   

16.
Tuberized tap roots of Witloof chicory (Cichorium intybus L.)were forced by placing in a dark chamber in a hydroponic systemunder high RH to produce an etiolated bud, the chicon. Plantswere fed nutrient solutions with two NO3concentrations of 1·5or 18 mol m–3 NO3, or demineralized water. The nutrientsolutions were labelled with 2% atom excess 15N. Although thechicon biomass increased with increasing NO3 concentration inthe nutrient solution, the chicon dry weight remained unchanged.The increased chicon biomass was, therefore, due to more waterin the chicon. The N in the chicon originated from either anendogenous source, the root, and/or an exogenous source, thenutrient solution. Organic N reserves remobilization and transferto the chicon were not been affected by NO3 supply. At the endof the forcing period 75% of the root N had been remobilized.Differences in the amount of N in the chicons of the three treatmentswere due to the uptake of exogenous N. The flux of exogenousnitrogen to the chicon in high NO3-plants was 2- to 6-fold higherthan in the low NO3-plants and, at the end of the forcing period,exogenous nitrogen contributed 30% of total chicon N in highNO3-plants and 10% in low NO3-plants. Net uptake of NO3 by chicory plants during the forcing processwas a function of N influx and N efflux. The increase in N influxwas accompanied by an increase in exogenous N flux to the chiconand probably a shift in root and/or chicon osmotic potentialwhich increased water flux to the chicon. Since NO3 did notaccumulate in either the chicon or the root, it is proposedthat osmotic solutes, such as organic acids and amino acidsmay be involved in osmotic potential changes in chicory duringthe forcing process. Key words: Cichorium intybus L., efflux, influx, nitrogen (15NO3) nutrition, remobilization  相似文献   

17.
Seedlings of Italian ryegrass (Lolium multiflorum Lam. cv. RVP)and clonal stolon cuttings of white clover (Trifolium repensL. cv. Blanca) were grown for 19 d in flowing solution culture,with N supplied as either 250 mmol m–3 NO3 or NH3+.Rates of net uptake, influx and translocation of NO3and NH4+ were then determined using 15N and 13N labelling techniques:between 3–5 h into the photoperiod following 8 h darknessfor white clover (CL), and for ryegrass plants that were eitherentire (IL) or with shoots excised 90 min prior to 13N influx(IC); and 75 min into the photoperiod following 37–39h darkness for ryegrass (ID). Rates of net uptake, influx andefflux of NH4+ exceeded those of NO3 in IL and IC ryegrassplants: the opposite occurred in white clover (CL). The decreasein net uptake following defoliation of ryegrass was greaterfor NH4+ (62%) than NO3 (40%). For NH4+ this was associatedwith a large decrease in influx from 110 to 6.0µmol h–1g–1 root fr. wt; but for NO3, influx only decreasedfrom 42 to 37 µmol h–1 g–1. Prolonged exposureto darkness (ID plants) also lowered net uptake of NO3and NH4+ by, respectively, 86% and 95% of IL levels. For NH4+this was characterized by a large decrease in influx and a smalldecrease in efflux; whilst for NO3 the effect of a largedecrease in influx was reinforced by a smaller increase in efflux. The data were used to estimate the translocatory fluxes of NO3(03–20µmol h–1 g–1) and NH4+ (003–0.4µmolh–1 g–1), assimilation in the roots of NO3(02–26µmol h–1 g–1) and NH+4 (05–89 µmolh–1 g–1), and the concentrations of NO3 (9–15mol m–3) in the cytoplasmic compartment of the roots.The relevance of variable influx and efflux to models for theregulation of N uptake is discussed. Key words: Lolium multiflorum, Trifolium repens, influx, efflux, nitrate, ammonium, 13N  相似文献   

18.
Barley plants (Hordewn vulgare L. cv. Atem) were grown fromseed for 28 d in flowing solution culture, during which timeroot temperature was lowered decrementally to 5?C. Plants werethen subjected to root temperatures of 3, 5, 7, 9, 11, 13, 17or 25 ?C, with common air temperature of 25/15 ?C (day/night).Changes in growth, plant total N, and NO3 levels, andnet uptake of NH4+ and NO3 from a maintained concentrationof 10 mmol m–3 NH4NO3 were measured over 14 d. Dry matterproduction increased 6-fold with increasing root temperaturebetween 3–25 ?C. The growth response was biphasic followingan increase in root temperature. Phase I, lasting about 5 d,was characterized by high root specific growth rates relativeto those of the shoot, particularly on a fresh weight basis.During Phase I the shoot dry weight specific growth rates wereinversely related to root temperature between 3–13 ?C.Phase 2, from 5–14 d, was characterized by the approachtowards, and/or attainment of, balanced exponential growth betweenshoots and roots. Concentrations of total N in plant dry matterincreased with root temperature between 3–25 ?C, moreso in the shoots than roots and most acutely in the youngestfully expanded leaf (2?l–6?9% N). When N contents wereexpressed on a tissue fresh weight basis the variation withtemperature lessened and the highest concentration in the shootwas at 11 ?C. Uptake of N increased with root temperature, andat all temperatures uptake of NH4+, exceeded that of NO3,irrespective of time. The proportions of total N uptake over14 d absorbed in the form of NH4+ were (%): 86, 91, 75, 77,76, 73, 77, and 80, respectively, at 3, 5, 7, 9, Il, 13, 17,and 25 ?C. At all temperatures the preference for NH4+ overNO3 uptake increased with time. An inverse relationshipbetween root temperature (3–11 ?C) and the uptake of NH4+as a proportion of total N uptake was apparent during PhaseI. The possible mechanisms by which root temperature limitsgrowth and influences N uptake are discussed. Key words: Hordeum vulgare, root temperature, ammonium, nitrate, ion uptake, growth rate  相似文献   

19.
Experiments with simulated swards of perennial ryegrass (Loliumperenne L.) grown in flowing nutrient solution with NO3- heldat 0.1 mg N I–1 show that the rate of NO3- uptake wasrelated to diurnal, day-to-day, and seasonal changes in radiation.In summer the diurnal variation in NO3-uptake ranged from 25to 50 mg N m–2 h–1 and the day-to-day variationranged from 500 to 1500 mg N m–2 d–1. Mean dailyrates of uptake over 12 d periods in summer and in winter averaged908 and 44 mg N m–2, respectively. The pattern of NO3-uptake followed that of CO2 flux with the maximum rate of theformer occurring 5 or 6 h after the maximum CO2 influx. Afterdefoliation, NO3- uptake was severely curtailed for 2 d concomitantwith a very small influx of CO2. Analysis of the changes thatoccurred in the rate of NO3- uptake immediately after the switchingon or off of artificial light suggests that two reversible processesmay be involved in the relation between NO3-uptake and radiation,one with a longer and the other with a shorter time constant.  相似文献   

20.
Acclimation of NO3 transport fluxes (influx, efflux)in roots of oilseed rape (Brassica napus L. cv. Bien venu) andtheir sensitivity to growth at low root temperature was studiedin relation to external NO3 supply, defined by constantconcentrations ranging from sub- to supra-optimal with respectto plant growth rate. Plants were grown from seed in flowingnutrient solutions containing 250 mmol m–3 NO3at 17°C for 20d, and solution temperature in half the cultureunits was then lowered decrementally over 3 d to 7°C. Threedays later plants were supplied with NO3 at 1, 10, 100or 1000 mmol m–3 maintained for 18 d. Dry matter productionwas decreased more by low root zone temperature than low [NO3]e. Root specific growth rates were inversely related to [NO3]eand shoot:root ratios increased with time at [NO3]e between10–1000 mmol m–3. Net uptake of NO3 at 17°Cwas twice that at 7°C, and at both temperatures it doubledwith increasing [NO3]e between 1–10 mmol m–3with further small increases at higher [NO3]e. Mean unitabsorption rates of NO3 between 0–6 d and 6–14d were linearly related (r2 of 0.79–0.99) to log10[NO].Steady-state Q10 (7–17°C) for uptake between 0–6d were 0.91, 1.62, 1.27, and 1.10, respectively, at [NO3]eof 1, 10, 100, and 1000 mmol m–3, compared with correspondingvalues of 0.98, 1.38, 1.68, and 1.89 between 6–14 d. Thedata indicated that net uptake rates at 7 and 17°C divergedover time at high [NO3]e. Short-term uptake rates from1 mol m–3 NO3 measured at 17°C were higherin plants grown with roots at 7°C than at 17°C; for7°C plants there was a strong inverse linear relationship(r2=0.94) between uptake rate and treatment log10 [NO3]ewhilst rates in 17°C plants were independent of prior [NO3]e. Rates of NO3 influx and efflux under different steady-stateconditions of NO3 supply and root temperature were calculatedfrom dilution of 15N added to culture solutions. Efflux wassubstantial relative to net uptake in all treatments, and wasinversely related to [NO3]e at 17°C but not at 7°C.Ratios of influx: efflux ranged from 1.6–2.9 at 17°Cand 1.3–1.8 at 7°C, indicating the proportionatelygreater impact of efflux at low root temperature. Ratios ofefflux: net uptake were 0.53–1.56 at 17°C and 1.21–3.58at 7°C. The apparent sensitivities of influx and effluxto steady-state root temperature varied with [NO3]e.Both fluxes were higher at 17°C than 7°C in the presenceof 100–1000 mmol m–3 NO3 but the trend wasreversed at 1–10 mmol m–3 NO. Concentrations oftotal N measured in xylem exudate were at least 2-fold higherat 7°C compared with 17°C, attributable mainly to higherconcentrations of NO3 glutamine and proline. The resultsare discussed in terms of acclimatory and other responses shownby the NO3 transport system under conditions of limitingNO3 supply and low root temperature. Key words: Brassica napus, nitrate supply, efflux, influx, root temperature, xylem exudate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号