首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification, isolation, and in vitro culture of porcine gonocytes   总被引:3,自引:0,他引:3  
Gonocytes are primitive germ cells that reside in the seminiferous tubules of neonatal testes and give rise to spermatogonia, thereby initiating spermatogenesis. Due to a lack of specific markers, the isolation and culture of these cells has proven to be difficult in the pig. In the present study, we show that a lectin, Dolichos biflorus agglutinin (DBA), which has specific affinity for primordial germ cells (PCGs) in the genital ridge, binds specifically to gonocytes in neonatal pig testes. The specific affinity of DBA for germ cells was progressively lost with age. This suggests that DBA binds strongly to primitive germ cells, such as gonocytes, weakly to primitive spermatogonia, and not at all to spermatogonia. The presence of alkaline phosphatase (AP) activity in the germ cells of neonatal pig testis confirmed the existence of primitive germ cells. Gonocytes from neonatal pig testis were purified, and a cell population that consisted of approximately 70% gonocytes was obtained, as indicated by the DBA binding assay. Purified gonocytes were cultured in DMEM/F12 supplemented with 10% FBS in the absence of any specific growth factors for 7 days. The cells remained viable and proliferated actively in culture. Initially, the gonocytes grew as focal colonies that transformed to three-dimensional colonies by 7 days of culture. Cultured germ cells expressed SSEA-1, a marker for embryonic stem (ES) cells, and were negative for the expression of somatic cell markers. These results should help to establish a male germ cell line that could be used for studying spermatogenesis in vitro and for genetic modification of pigs.  相似文献   

2.
We have demonstrated a role for activin A, follistatin, and FSH in male germ cell differentiation at the time when spermatogonial stem cells and committed spermatogonia first appear in the developing testis. Testis fragments from 3-day-old rats were cultured for 1 or 3 days with various combinations of these factors, incubated with bromodeoxyuridine (BrdU) to label proliferating cells, and then processed for stereological analysis and detection of BrdU incorporation. Gonocyte numbers were significantly elevated in cultures treated with activin, while the combination of FSH and the activin antagonist, follistatin, increased the proportion of spermatogonia in the germ cell population after 3 days. All fragment groups treated with FSH contained a significantly higher proportion of proliferating Sertoli cells, while activin and follistatin each reduced Sertoli cell division. In situ hybridization and immunohistochemistry on normal rat testes demonstrated that gonocytes, but not spermatogonia, contain the activin beta(A) subunit mRNA and protein. In contrast, gonocytes first expressed follistatin mRNA and protein at 3 days after birth, concordant with the transition of gonocytes to spermatogonia. Collectively, these data demonstrate that germ cells have the potential to regulate their own maturation through production of endogenous activin A and follistatin. Sertoli cells were observed to produce the activin/inhibin beta(A) subunit, the inhibin alpha subunit, and follistatin, demonstrating that these cells have the potential to regulate germ cell maturation as well as their own development. These findings indicate that local regulation of activin bioactivity may underpin the coordinated development of germ cells and somatic cells at the onset of spermatogenesis.  相似文献   

3.
Summary The germinal dense body (GDB) in the teleost, Oryzias latipes, an organelle unique to the cells of germ line, is regarded as a counterpart of nuage material in amphibians and mammals. In the study described herein, GDBs in male germ line cells were examined by electron microscopy. GDBs existed continuously in the cytoplasm of primordial germ cells (PGCs), prespermatogonia, type-A spermatogonia and early type-B spermatogonia. But they became rudimentary in late type-B spermatogonia and early spermatocytes, and no longer occurred in spermatids. Differences in the morphology of GDBs of PGCs and male germ cells were also noted. In PGCs of indifferent gonads, about 50% of GDBs were amorphous bodies of fine electron-dense fibrils, whereas in spermatogonia amorphous bodies decreased in number and GDBs of strand-like structure were more frequent. The change in the morphology of GDBs began when the sex differentiation of gonads became evident, and proceeded gradually in prespermatogonia. No obvious differences in morphology of GDBs were noted between prespermatogonia in the fry at later stages of development and spermatogonia in adult fish.  相似文献   

4.
The temporal appearance of seasonal changes in numbers of Leydig, Sertoli, and germ cells was evaluated to determine if seasonally increased daily spermatozoan production might be preceded by changes in numbers of either of two somatic testicular cells. A significant increase in numbers of spermatogonia and Sertoli cells preceded the significant increase in number of Leydig cells in the approaching breeding season. Seasonal changes in parenchymal weight and in numbers of Sertoli cells, Leydig cells, and germ cells were maximal in May and June. Numbers of A or B spermatogonia in June were 2.4 to 2.5 times the number present in January. During the same time period, numbers of other germ cells, as well as Leydig cells and Sertoli cells, were increased by 1.5 to 1.9 times. The magnitude of change between January and March (first time period that the change was significant) was greater for A spermatogonia (1.7-fold) than for other cell types (1.3-fold to 1.5-fold). Hence, the need to accommodate more spermatogonial progeny might cause increased testicular size and number of somatic cells, including Sertoli cells. Season did not influence the rate of degeneration between A and B spermatogonia. However, in the breeding season, the conversion of B spermatogonia to primary spermatocytes was reduced. The lack of a seasonal difference in the ratio of primary spermatocytes per Sertoli cell was consistent with a limited capacity of individual Sertoli cells to accommodate primary spermatocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Dead end is a vertebrate-specific RNA-binding protein implicated in germ cell development. We have previously shown that mouse Dead end1 (DND1) is expressed in male embryonic germ cells and directly interacts with NANOS2 to cooperatively promote sexual differentiation of fetal germ cells. In addition, we have also reported that NANOS2 is expressed in self-renewing spermatogonial stem cells and is required for the maintenance of the stem cell state. However, it remains to be determined whether DND1 works with NANOS2 in the spermatogonia. Here, we show that DND1 is expressed in a subpopulation of differentiating spermatogonia and undifferentiated spermatogonia, including NANOS2-positive spermatogonia. Conditional disruption of DND1 depleted both differentiating and undifferentiated spermatogonia; however, the numbers of Asingle and Apaired spermatogonia were preferentially decreased as compared with those of Aaligned spermatogonia. Finally, we found that postnatal DND1 associates with NANOS2 in vivo, independently of RNA, and interacts with some of NANOS2-target mRNAs. These data not only suggest that DND1 is a partner of NANOS2 in undifferentiated spermatogonia as well as in male embryonic germ cells, but also show that DND1 plays an essential role in the survival of differentiating spermatogonia.  相似文献   

6.
Summary Germ cells of human fetuses aged 7–13 weeks were studied. Dense fibrous material called nuage was found in the cytoplasm of human fetal germ cells. The nuage increased in frequency in the germ cells during the interval studied. In oogonia the nuage occurred much more frequently than in spermatogonia and the frequency of nuage in oogonia increased earlier than in spermatogonia. The number of nuage was continuously at a higher level in oogonia than in spermatogonia. It is suggested that these findings support the theory that the nuage may act as a germ cell determinant.  相似文献   

7.
Immunohistochemical localization of sulfhydryloxidase (SOx) has been examined in the testis of the Axolotl (Ambystoma mexicanum). The urodelan testis contains germ cells in various phases of differentiation from primordial germ cells to mature spermatozoa. SOx immunoreactivity is present in mitochondria of primordial germ cells and primary spermatogonia and declines within the population of secondary spermatogonia, suggesting, that the antibody used to localize SOx may serve to estimate the developmental stage of spermatogonia towards meiosis, since more undifferentiated cells react positively. Intensity of immunostaining increases again in spermatocytes and becomes most intense in early round spermatids correlating on ultrastructural level with an accumulation of numerous mitochondria in that part of the cytoplasm, where the acrosome vesicle is formed. Mature sperm are immunonegative. Additionally, Leydig cells within the glandular tissue are stained by the antibody. Thus the distribution pattern of SOx immunoreactivity principally resembles that in the mammalian testis found during ontogenesis or in the adult seminiferous epithelium. The possible functional significance of mitochondrial SOx in germ cells and Leydig cells is discussed. These results suggest, that the amphibian testis is a model for experimental problems dealing with the investigation of germ cells in various developmental phases including very undifferentiated premeiotic germ cells. The cystic testis may be of value in studying influences of various experimental conditions on varied homogeneous populations of germ cells.  相似文献   

8.
We previously cultured fragments of newt testes in chemically defined media and showed that mammalian follicle-stimulating hormone (FSH) stimulates proliferation of spermatogonia as well as their differentiation into primary spermatocytes (Ji et al., 1992; Abe and Ji, 1994). Next, we indicated in cultures composed of spermatogonia and somatic cells (mainly Sertoli cells) that FSH stimulates germ cell proliferation via Sertoli cells (Maekawa et al., 1995). However, the spermatogonia did not differentiate into primary spermatocytes, but instead died. In the present study, we embedded large reaggregates of spermatogonia and somatic cells (mainly Sertoli cells) within a collagen matrix and cultured the reaggregates on a filter that floated on chemically defined media containing FSH; in this revised culture system, spermatogonia proliferated and differentiated into primary spermatocytes. The viability and percentage of germ cells differentiating into primary spermatocytes were proportional to the percentage of somatic cells in the culture, indicating that differentiation of spermatogonia into primary spermatocytes is mediated by Sertoli cells.  相似文献   

9.
10.
The effect of the mutation for white belly spot controlled by the dominant gene W on spermatogenesis in mice was examined by experimental cryptorchidism and its surgical reversal. The course of spermatogenesis from spermatogonia to spermatid was normal in intact testes of W/+ mice. In cryptorchid testes, there was no difference in the number and activity of Type A spermatogonia between the testes of W/+ and +/+ mice, in mitotic and labelling indices. Although surgical reversal of the cryptorchid testis resulted in regenerative differentiation of germ cells in both genotypes, the recovery of cell differentiation in the W/+ testis was slower than in the +/+ testis. There were fewer germ cells, such as intermediate-Type B spermatogonia or more advanced ones, in W/+ testes. On Day 17 after surgical reversal, cell associations in W/+ testes were abnormal and the numbers of intermediate-Type B spermatogonia, spermatocytes and spermatids were approximately 70, 50 and 15%, respectively, of those in +/+ testes. These results indicate that the W gene affects spermatogenic cell differentiation in adult mice.  相似文献   

11.
12.
In this study, we examined the in vitro effects of insulin-like growth factor I (IGF-I) in the presence or absence of 11-ketotestosterone (11-KT: the spermatogenesis-inducing hormone) on the proliferation of Japanese eel (Anguilla japonica) testicular germ cells. Initially, a short-term culture (15 days) of testicular tissue with only type A and early type B spermatogonia (preproliferated spermatogonia) was carried out in Leibovitz-15 growth medium supplemented with different concentrations of recombinant human IGF (rhIGF)-I or -II in the presence or absence of 10 ng/ml of 11-KT. Late type B spermatogonia (proliferated spermatogonia) were observed in treatments of 100 ng/ml of both rhIGF-I and -II in combination with 11-KT, indicating the onset and progression of spermatogenesis. In all tested rhIGF-I concentrations (except 0.1 ng/ml) supplemented with 11-KT, late type B spermatogonia were detected in at least one individual. Then, we proceeded with an in vitro 45-day culture of testicular tissue with 100 ng/ml of rhIGF-I in the presence or absence of 10 ng/ml of 11-KT to test the long-term effects of rhIGF-I on the spermatogenetic cycle. The presence of all types of germ cells, including spermatozoa, in the testis cultured with the admixture of the two hormones indicated that the germ cells underwent complete spermatogenesis whereas no germ cell proliferation was observed when the rhIGF-I was applied alone. These results suggest that IGF-I in the presence of 11-KT plays an essential role in the onset, progress, and regulation of spermatogenesis in the testis of the Japanese eel.  相似文献   

13.
The effect of temperature on testicular DNA synthesis in mice was studied in vitro. By using cultures of cryptorchid testis, DNA synthesis of differentiated germ cells, such as intermediate and type B spermatogonia and resting primary spermatocytes, was shown to be temperature-sensitive, while that of undifferentiated type A spermatogonia was not. DNA synthesis of non-germ cells was not temperature-sensitive. This temperature sensitivity of germ cells in DNA synthesis may be one cause of the thermal inhibition of germ cell differentiation.  相似文献   

14.
The effect of temperature on testicular DNA synthesis in mice was studied in vitro. By using cultures of cryptorchid testis, DNA synthesis of differentiated germ cells, such as intermediate and type B spermatogonia and resting primary spermatocytes, was shown to be temperature-sensitive, while that of undifferentiated type A spermatogonia was not. DNA synthesis of non-germ cells was not temperature-sensitive. This temperature sensitivity of germ cells in DNA synthesis may be one cause of the thermal inhibition of germ cell differentiation.  相似文献   

15.
The spermatogonia of fish can be classified as being either undifferentiated type A spermatogonia or differentiated type B spermatogonia. Although type A spermatogonia, which contain spermatogonial stem cells, have been demonstrated to be a suitable material for germ cell transplantation, no molecular markers for distinguishing between type A and type B spermatogonia in fish have been developed to date. We therefore sought to develop a molecular marker for type A spermatogonia in rainbow trout. Using GFP-dependent flow cytometry (FCM), enriched fractions of type A and type B spermatogonia, testicular somatic cells, and primordial germ cells were prepared from rainbow trout possessing the green fluorescent protein (GFP) gene driven by trout vasa regulatory regions (pvasa-GFP rainbow trout). The gene-expression profiles of each cell fraction were then compared with a microarray containing cDNAs representing 16,006 genes from several salmonid species. Genes exhibiting high expression for type A spermatogonia relative to above-mentioned other types of gonadal cells were identified and subjected to RT-PCR and quatitative PCR analysis. Since only the rainbow trout notch1 homologue showed significantly high expression in the type A spermatogonia-enriched fraction, we propose that notch1 may be a useful molecular marker for type A spermatogonia. The combination of GFP-dependent FCM and microarray analysis of pvasa-GFP rainbow trout can therefore be applied to the identification of potentially useful molecular markers of germ cells in fish.  相似文献   

16.
The effect of white-spotting (W) mutations on differentiation of testicular germ cells was investigated by using experimental cryptorchidism and its surgical reversal. All mutant mice used in this study (Wv/+, Wsh/+, Wf/+ and Wf/Wf) showed normal fertility and well-ordered spermatogenesis, as in congenic +/+ mice. In the cryptorchid testis, which contains only type A spermatogonia as germ cells, the number and the proliferative activity of type A spermatogonia in mutant mice were comparable to +/+ mice. On the other hand, surgical reversal of the cryptorchid testis in mutants resulted in impaired regenerative differentiation of germ cells. Although complete recovery of spermatogenesis was observed in +/+ mice, testicular weight in Wsh/+, Wf/+ and Wf/Wf mice recovered to approximately 60-70% of intact levels, and some portions of seminiferous epithelium showed incomplete spermatogenesis. In Wv/+ mice, however, ability to recover the weight was completely lost, and only type A spermatogonia existed as germ cells in seminiferous tubules 3 mo after surgical reversal. These results suggest that W mutation affects the differentiation through type A spermatogonia to type B spermatogonia, indicating the functional significance of W (c-kit) in early spermatogenesis.  相似文献   

17.
Recent studies in mammals have revealed the heterogeneity of spermatogonial populations which contain differentiated and undifferentiated cells that further divide into actual stem cells and potential stem cells. In fish however, there are no functional definitions, and very few molecular markers, for germ cells. In our present study, specific antibodies were raised against Sycp3, Plzf and Cyclin B3 in zebrafish and then used to determine the localization of these proteins in the testis. We wished to confirm whether these molecules were potential markers for spermatocytes and spermatogonia. Immunohistochemical observations revealed that Sycp3 is specifically localized in spermatocytes in typical nuclear patterns at each meiotic stage. Plzf was found to be localized in the nucleus of both type A and type B spermatogonia until the 8-cell clone, similar to the pattern in Plzf-positive A(single)-A(aligned) undifferentiated spermatogonia in rodents. In addition to Plzf, the localization of Cyclin B3 was predominantly detected in the nuclei of type A and early type B spermatogonia until the 16-cell clone. Additionally, Cyclin B3 protein signals were detected in germ cells in large cysts, possibly corresponding to spermatocytes at the preleptotene stage. Our present data thus show that these molecules have properties that will enable their use as markers of spermatocytes and early spermatogonia in zebrafish.  相似文献   

18.
Several cell types migrated cut from small pieces of newt testes cultivated in vitro. Flat fibroblastic cells migrated out within a few days. Then, secondary spermatogonia, identified by the presence of germ cell-specific substances and by the shape and appearance of their nucleus and subcellular organelles, migrated out over the sheet of fibroblastic cells. Sertoli cells co-migrated with secondary spermatogonia, maintaining a similar cellular arrangement to that of testicular cells in vivo. Mitosis of secondary spermatogonia both in clusters and as single cells was frequent from the third day until about 2 weeks after inoculation. During mitosis, active and periodic rotation of chromosomes was observed. Identification of the cell types and studies on their behavior were performed by electron microscopy and phase contrast microscopy.  相似文献   

19.
The objective of this study was to establish a protocol for the characterization, isolation, and culture of type A spermatogonia using specific molecular markers for these cells in fish. To this end, adult Prochilodus lineatus testes were collected and digested enzymatically and the resulting testicular suspension was separated using a discontinuous Percoll gradient, followed by differential plating. The cell cultures obtained were monitored for 15 days and analyzed using the immunofluorescence method with anti‐Vasa, anti‐GFRα1, and anti‐OCT4 antibodies. Spermatogonial enrichment was also performed using flow cytometry. Although discontinuous Percoll gradient centrifugation followed by differential plating enabled the removal of differentiated germ cells and somatic cells, enriching the pool of type A spermatogonia, the enrichment of type A spermatogonia through flow cytometry of samples without Percoll proved to be more efficient. Prominent cell agglomerates that were characterized according to different stem cell markers as type A spermatogonia were observed during the 15 days of the cell culture. The use of immunoperoxidase and western blot analysis methods confirmed the specificity of the markers for type A spermatogonia of P. lineatus. When combined with specific cell culture conditions, the positive characterization of these molecular markers clarified certain aspects of spermatogonial regulation, such as survival and proliferation. Finally, understanding the regulation of the in vitro germ cell maintenance process may contribute to the enhancement of in vivo and in vitro reproduction techniques of endangered or aquaculture fish species.  相似文献   

20.
The gilthead seabream is a protandrous hermaphrodite seasonal breeding teleost with a bisexual gonad that offers an interesting model for studying the testicular regression process that occurs in both seasonal testicular involution and sex change. Insofar as fish reproduction is concerned, little is known about cell renewal and elimination during the reproductive cycle of seasonal breeding teleosts with asynchronous spermatogenesis. We have previously described how acidophilic granulocytes infiltrate the testis during postspawning where, surprisingly, they produce interleukin-1beta, a known growth factor for mammalian spermatogonia, rather than being directly involved in the elimination of degenerative germ cells. In this study, we are able to discriminate between spermatogonia stem cells and primary spermatogonia according to their nuclear and cytoplasmic diameters and location in the germinal epithelium, finding that these two cell types, together with Sertoli cells, proliferate throughout the reproductive cycle with a rate that depends on the reproductive stage. Thus, during spermatogenesis the spermatogonia stem cells, the Sertoli cells, and the developing germ cells (primary spermatogonia, A and B spermatogonia, and spermatocytes) in the germinal compartment, and cells with fibroblast-shaped nuclei in the interstitial tissue proliferate. However, during spawning, the testis shows few proliferating cells. During postspawning, the resumption of proliferation, the occurrence of apoptotic spermatogonia, and the phagocytosis of nonshed spermatozoa by Sertoli cells lead to a reorganization of both the germinal compartment and the interstitial tissue. Finally, the proliferation of spermatogonia increases during resting when, unexpectedly, both oogonia and oocytes also proliferate. This proliferative pattern was correlated with the gonadosomatic index, testicular morphology, and testicular and gonad areas, suggesting that complex mechanisms operate in the regulation of gonocyte proliferation in hermaphrodite fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号