首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
1,25-Dihydroxyvitamin D3 [1,25D] deficiency and vitamin D receptor [VDR] genotypes are risk factors for several diseases and disorders including heart diseases. Extracellular matrix (ECM) remodeling mediated by matrix metalloproteinases [MMPs] contributes to progressive left ventricular remodeling, dilation, and heart failure. In the present study, we used high-density oligonucleotide microarray to examine gene expression profile in wild type [WT] and vitamin D receptor knockout mice (VDR KO) which was further validated by RT-PCR. Microarray analysis revealed tissue inhibitors of metalloproteinases [TIMP-1 and TIMP-3] were significantly under expressed in VDR KO mice as compared to WT mice which was further validated by RT-PCR. Zymography and RT-PCR showed that MMP-2 and MMP-9 were up regulated in VDR KO mice. In addition, cross-sectional diameter and longitudinal width of the VDR KO heart myofibrils showed highly significant cellular hypertrophy. Trichrome staining showed marked increase in fibrotic lesions in the VDR KO mice. Heart weight to body weight ratio showed 41% increase in VDR KO mice when compared to WT mice. This data supports a role for 1,25D in heart ECM metabolism and suggests that MMPs and TIMPs expression may be modulated by vitamin D.  相似文献   

2.
Vitamin D compounds suppress the production of interleukin-2 (IL-2) by peripheral blood mononuclear cells (PBMCs) stimulated with phytohemagglutinin in a dose-dependent manner. We used this suppression to test 26,26,26,27,27,27-hexafluorinated analogs of vitamin D3 for their immunosuppressive activity in PBMCs. 26,26,26,27,27,27-Hexafluoro-1,25-dihydroxyvitamin D3 and 26,26,26,27,27,27-hexafluoro-1,24-dihydroxyvitamin D3 were approximately 10 times more potent than 1,25-dihydroxyvitamin D3 in suppressing IL-2 production. 26,26,26,27,27,27-Hexafluoro-1-hydroxyvitamin D3 was 20 to 30 times less potent than 1,25-dihydroxyvitamin D3 in causing this effect. The relative biopotency of each vitamin D3 analog toward PBMC proliferation was roughly similar to that toward IL-2 production by PBMCs. Suppression of PBMC proliferation by vitamin D3 analogs seemed to be a secondary effect of their inhibition of IL-2 production.  相似文献   

3.
We examined the ability of 1,25 (OH)(2) vitamin D(3) (Vit D) to stimulate osteoclast-like cell (OCL) formation in cocultures of spleen cells and primary calvarial osteoblasts from wild-type (WT) and IL-1R type 1-deficient (knockout; KO) mice. Vit D dose dependently increased OCL in cocultures containing WT osteoblasts. In contrast, there was a 90% reduction in OCL numbers in cocultures containing KO osteoblasts. In cocultures with either WT or KO osteoblasts, treatment with Vit D increased receptor activator of NF-kappaB ligand mRNA by 17-, 19-, or 3.5-fold, respectively. Vit D decreased osteoprotegerin mRNA to undetectable in all groups. Intracellular IL-1alpha protein increased after Vit D treatment in cocultures containing WT, but not KO osteoblasts. We also examined direct effects of Vit D, IL-1alpha, and their combination on gene expression in primary osteoblasts. In WT cells, Vit D and IL-1 stimulated receptor activator of NF-kappaB ligand mRNA expression by 3- and 4-fold, respectively, and their combination produced a 7-fold increase. Inhibition of osteoprotegerin mRNA in WT cells was partial with either agent alone and greatest with their combination. In KO cells, only Vit D stimulated a response. IL-1 alone increased IL-1alpha protein expression in WT osteoblasts. However, in combination with Vit D, there was a synergistic response (100-fold increase). In KO cultures, there were no effects of IL-1, Vit D, or their combination on IL-1alpha protein. These results demonstrate interactions between IL-1 and Vit D in primary osteoblasts that appear important in both regulation of IL-1alpha production and the ability of Vit D to support osteoclastogenesis.  相似文献   

4.
Biological activity of 24-epi-1 alpha,25-dihydroxyvitamin D-2 (24-epi-1,25(OH)2D2) and 1 alpha,25-dihydroxyvitamin D-7 (1,25(OH)2D7), the 22,23-dihydro derivative of the former compound, was investigated. Both of the vitamin D derivatives stimulated intestinal calcium transport and calcium mobilization from bones in rats; however, the effect was about 50% of that of 1 alpha,25-dihydroxyvitamin D-3 (1,25(OH)2D3). On the other hand, 24-epi-1,25(OH)2D2 and 1,25(OH)2D7 inducement of HL-60 human leukemia cell differentiation was comparable to that of 1,25(OH)2D3. Accordingly, the differentiation-inducing activity of 24-epi-1,25(OH)2D2 and 1,25(OH)2D7 was much greater than their ability to stimulate calcium metabolism. In contrast to 1,25(OH)2D3, 24-epi-1,25(OH)2D2 and 1,25(OH)2D7 exerted little hypercalcemic activity in mice. These results suggest that both vitamin D derivatives will be useful as anti-tumor agents.  相似文献   

5.
The active form of vitamin D (1,25D3) suppressed the development of animal models of human autoimmune diseases including experimental inflammatory bowel disease (IBD). The vitamin D receptor (VDR) is required for all known biologic effects of vitamin D. Here we show that VDR deficiency (knockout, KO) resulted in severe inflammation of the gastrointestinal tract in two different experimental models of IBD. In the CD45RB transfer model of IBD, CD4+/CD45RBhigh T cells from VDR KO mice induced more severe colitis than wild-type CD4+/CD45RBhigh T cells. The second model of IBD used was the spontaneous colitis that develops in IL-10 KO mice. VDR/IL-10 double KO mice developed accelerated IBD and 100% mortality by 8 wk of age. At 8 wk of age, all of the VDR and IL-10 single KO mice were healthy. Rectal bleeding was observed in every VDR/IL-10 KO mouse. Splenocytes from the VDR/IL-10 double KO mice cells transferred IBD symptoms. The severe IBD in VDR/IL-10 double KO mice is a result of the immune system and not a result of altered calcium homeostasis, or gastrointestinal tract function. The data establishes an essential role for VDR signaling in the regulation of inflammation in the gastrointestinal tract.  相似文献   

6.
7.
8.
9.
10.
The role of vitamin D metabolites in the regulation of hepatic 25-hydroxyvitamin D production was investigated by examining the effects of 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and 24,25-dihydroxyvitamin D on the synthesis of [25-3H]hydroxyvitamin D by rachitic rat liver homogenates. Production of [25-3H]hydroxyvitamin D was inhibited by 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, but not by 24,25-dihydroxyvitamin D. 25-Hydroxyvitamin D increased the Km of the vitamin D-25-hydroxylase enzyme(s), while 1,25-dihydroxyvitamin D decreased the Vmax with a Ki of 88.7 ng/ml. Inhibition of hepatic 25-hydroxyvitamin D production by 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D may be another control mechanism to regulate circulating vitamin D levels.  相似文献   

11.
The immunomodulatory effects of vitamin D have been described following chronic oral administration to mice or supplementation of cell cultures with 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), the active form of vitamin D. In this study, topically applied 1,25(OH)(2)D(3), enhanced the suppressive capacity of CD4(+)CD25(+) cells from the draining lymph nodes. The effects of topical 1,25(OH)(2)D(3) were compared with those of UVB irradiation, which is the environmental factor required for 1,25(OH)(2)D(3) production in skin. CD4(+) cells from the skin-draining lymph nodes (SDLN) of either 1,25(OH)(2)D(3)-treated or UVB-irradiated mice had reduced capacity to proliferate to Ags presented in vitro, and could suppress Ag-specific immune responses upon adoptive transfer into naive mice. This regulation was lost upon removal of CD4(+)CD25(+) cells. Furthermore, purified CD4(+)CD25(+) cells from the SDLN of 1,25(OH)(2)D(3)-treated or UVB-irradiated mice compared with equal numbers of CD4(+)CD25(+) cells from control mice had increased capacity to suppress immune responses in both in vitro and in vivo assay systems. Following the sensitization of recipient mice with OVA, the proportion of CD4(+)Foxp3(+) cells of donor origin significantly increased in recipients of CD4(+)CD25(+) cells from the SDLN of 1,25(OH)(2)D(3)-treated mice, indicating that these regulatory T cells can expand in vivo with antigenic stimulation. These studies suggest that 1,25(OH)(2)D(3) may be an important mediator by which UVB-irradiation exerts some of its immunomodulatory effects.  相似文献   

12.
13.
Mice lacking the vitamin D receptor (VDR) are resistant to airway inflammation. Pathogenic immune cells capable of transferring experimental airway inflammation to wildtype (WT) mice are present and primed in the VDR KO mice. Furthermore, the VDR KO immune cells homed to the WT lung in sufficient numbers to induce symptoms of asthma. Conversely, WT splenocytes, Th2 cells and hematopoetic cells induced some symptoms of experimental asthma when transferred to VDR KO mice, but the severity was less than that seen in the WT controls. Interestingly, experimentally induced vitamin D deficiency failed to mirror the VDR KO phenotype suggesting there might be a difference between absence of the ligand and VDR deficiency. Lipopolysaccharide (LPS) induced inflammation in the lungs of VDR KO mice was also less than in WT mice. Together the data suggest that vitamin D and the VDR are important regulators of inflammation in the lung and that in the absence of the VDR the lung environment, independent of immune cells, is less responsive to environmental challenges.  相似文献   

14.
The active metabolite of vitamin D (1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3))) is known to modulate the immune response in Th1 cell-directed diseases. To investigate the role of vitamin D in Th2 cell-directed diseases, experimental allergic asthma was induced in vitamin D receptor (VDR) knockout and in wild-type (WT) mice. As expected, WT mice developed symptoms of airway inflammation with an influx of eosinophils, elevated Th2 cytokine levels, mucous production, and airway hyperresponsiveness. The administration of 1,25(OH)(2)D(3) had no effect on asthma severity. The only discernable effect of 1,25(OH)(2)D(3) on experimental allergic asthma in WT mice was an increased expression of two Th2-related genes (soluble CD23 and GATA-3) in lungs of BALB/c mice exposed to Ag through the nasal route only. By contrast, asthma-induced VDR knockout mice failed to develop airway inflammation, eosinophilia, or airway hyperresponsiveness, despite high IgE concentrations and elevated Th2 cytokines. The data suggest that although 1,25(OH)(2)D(3) induced these Th2-type genes, the treatment failed to have any affect on experimental asthma severity. However, VDR-deficient mice failed to develop experimental allergic asthma, suggesting an important role for the vitamin D endocrine system in the generation of Th2-driven inflammation in the lung.  相似文献   

15.
Several lines of in vitro evidence suggest the potential role of IFN-gamma in angiogenesis and collagen deposition, two crucial steps in the wound healing process. In this report, we examined the role of IFN-gamma in the skin wound healing process utilizing WT and IFN-gamma KO mice. In WT mice, excisional wounding induced IFN-gamma mRNA and protein expression by infiltrating macrophages and T cells, with a concomitant enhancement of IL-12 and IL-18 gene expression. Compared with WT mice, IFN-gamma KO mice exhibited an accelerated wound healing as evidenced by rapid wound closure and granulation tissue formation. Moreover, IFN-gamma KO mice exhibited enhanced angiogenesis with augmented vascular endothelial growth factor mRNA expression in wound sites, compared with WT mice, despite a reduction in the infiltrating neutrophils, macrophages, and T cells. IFN-gamma KO mice also exhibited accelerated collagen deposition with enhanced production of TGF-beta1 protein in wound sites, compared with WT mice. Furthermore, the absence of IFN-gamma augmented the TGF-beta1-mediated signaling pathway, as evidenced by increases in the levels of total and phosphorylated Smad2 and a reciprocal decrease in the levels of Smad7. These results demonstrate that there is crosstalk between the IFN-gamma/Stat1 and TGF-beta1/Smad signaling pathways in the wound healing process.  相似文献   

16.
1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D] has been shown to inhibit development of dextran sodium sulfate (DSS)-induced colitis in mice but can also cause hypercalcemia. The aim of this study was to evaluate whether β-glucuronides of vitamin D could deliver 1,25(OH)(2)D to the colon to ameliorate colitis while reducing the risk of hypercalcemia. Initial studies demonstrated that bacteria residing in the lower intestinal tract were capable of liberating 1,25(OH)(2)D from 1,25-dihydroxyvitamin D(3)-25-β-glucuronide [β-gluc-1,25(OH)(2)D]. We also determined that a much greater upregulation of the vitamin D-dependent 24-hydroxylase gene (Cyp24) was induced in the colon by treatment of mice with an oral dose of β-gluc-1,25(OH)(2)D than 1,25(OH)(2)D, demonstrating targeted delivery of 1,25(OH)(2)D to the colon. We then tested β-glucuronides of vitamin D in the mouse DSS colitis model in two studies. In mice receiving DSS dissolved in distilled water and treated with 1,25(OH)(2)D or β-gluc-1,25(OH)(2)D, severity of colitis was reduced. Combination of β-gluc-1,25(OH)(2)D with 25-hydroxyvitamin D(3)-25-β-glucuronide [β-gluc-25(OH)D] resulted in the greatest reduction of colitis lesions and symptoms in DSS-treated mice. Plasma calcium concentrations were lower in mice treated with β-gluc-1,25(OH)(2)D alone or in combination with β-gluc-25(OH)D than in mice treated with 1,25(OH)(2)D, which were hypercalcemic at the time of death. β-Glucuronides of vitamin D compounds can deliver 1,25(OH)(2)D to the lower intestine and can reduce symptoms and lesions of acute colitis in this model.  相似文献   

17.
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) interacts with the Vitamin D3 receptor (VDR) to modulate proliferation and apoptosis in a variety of cell types, including breast cancer cells. In this review, we discuss three issues related to the role of the VDR in growth control: first, whether mammary glands lacking VDR exhibit abnormal growth; second, whether the VDR is essential for induction of apoptosis by 1,25(OH)2D3; and third, whether VDR up-regulation can sensitize cells to 1,25(OH)2D3. Studies from our laboratory have demonstrated that mammary glands from VDR knockout (VDR KO) mice exhibit accelerated growth and branching during puberty, pregnancy and lactation as compared to wild-type (WT) mice. In addition, involution after weaning, a process driven by epithelial cell apoptosis, proceeds at a slower rate in VDR KO mice compared to WT mice. Using cells isolated from VDR KO and WT mice, we report that both normal and transformed mammary cells derived from WT mice are growth inhibited by 1,25(OH)2D3, however, cells derived from VDR KO mice are completely unresponsive to 1,25(OH)2D3. In human breast cancer cells, we have identified a variety of agents, including steroid hormones, phytoestrogens and growth factors, that up-regulate VDR expression and enhance sensitivity to 1,25(OH)2D3-mediated growth inhibition. Collectively, these studies support a role for 1,25(OH)2D3 and the VDR in negative growth regulation of both normal mammary gland and breast cancer cells.  相似文献   

18.
19.
The binding of 25-hydroxy-[26,27-3H]vitamin D-3 and 25-hydroxy-[26,27-3H]vitamin D-2 to the vitamin D binding protein in the plasma of both rats and chicks has been studied. In the case of rats, sucrose density gradient analysis, competitive displacement, and Scatchard analysis demonstrate that 25-hydroxyvitamin D-3 and 25-hydroxyvitamin D-2 are bound equally well to the vitamin D binding protein. In contrast, 25-hydroxyvitamin D-2 is poorly bound, while 25-hydroxyvitamin D-3 is tightly bound to the vitamin D binding protein in chick plasma. On the other hand, the chick intestinal receptor binds 1,25-dihydroxyvitamin D-2 and 1,25-dihydroxyvitamin D-3 equally well with a KD of 7.10(-11) M for both compounds. These results strongly suggest that the failure of the plasma transport protein in chicks to bind the vitamin D-2 compounds may be responsible for their relative ineffectiveness in these animals.  相似文献   

20.
The present study was conducted to critically determine the protective role of IL-18 in host response to Mycobacterium tuberculosis infection. IL-18-deficient (knockout (KO)) mice were slightly more prone to this infection than wild-type (WT) mice. Sensitivity of IL-12p40KO mice was lower than that of IL-12p40/IL-18 double KO mice. IFN-gamma production caused by the infection was significantly attenuated in IL-18KO mice compared with WT mice, as indicated by reduction in the levels of this cytokine in sera, spleen, lung, and liver, and its synthesis by spleen cells restimulated with purified protein derivatives. Serum IL-12p40 level postinfection and its production by peritoneal exudate cells stimulated with live bacilli were also significantly lower in IL-18KO mice than WT mice, suggesting that attenuated production of IFN-gamma was secondary to reduction of IL-12 synthesis. However, this was not likely the case, because administration of excess IL-12 did not restore the reduced IFN-gamma production in IL-18KO mice. In further studies, IL-18 transgenic mice were more resistant to the infection than control littermate mice, and serum IFN-gamma level and its production by restimulated spleen cells were increased in the former mice. Taken together, our results indicate that IL-18 plays an important role in Th1 response and host defense against M. tuberculosis infection although the contribution was not as profound as that of IL-12p40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号