首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Salt-tolerant cell lines of citrus rootstock (Poncirus trifoliata cv Pomeroy) were selected by subculturing embryo-derived calli on media containing sublethal concentrations of NaCl (5 and 10 g/l). Selected lines showed a normal growth in the presence of salt at the concentrations used for selection, and salt tolerance persisted after a passage on a salt-free media. Their K+ and Ca2+ content remained higher than in control cells for increasing NaCl concentration in the medium, suggesting a modification of cell membrane permeability as the main cause of NaCl tolerance. Shoots and plants regenerated from selected cell lines showed improved growth and salt tolerance. Calli induced from these plants tolerated a salt concentration of 10 g/l, indicating the persistance of the selected trait.  相似文献   

2.
The uptake of 3H-labeled choline by a suspension of isolated type II epithelial cells from rat lung has been studied in a Ringer medium. Uptake was linear for 4 min at both 0.1 μm and 5.0 μm medium choline; at 5 μm, only 10% of the label was recovered in a lipid fraction. Further experiments were conducted at the low concentration (0.1 μm), permitting characterization of the properties of high-affinity systems. Three fractions of choline uptake were detected: (i) a sodium-dependent system that was totally inhibited by hemicholinium-3 (HC-3); (ii) a sodium-independent uptake, when Na+ was replaced by Li+, K+ or Mg2+, inhibited by HC-3; (iii) a residual portion persisting in the absence of Na+ and unaffected by HC-3. Choline uptake was sigmoidally related to the medium Na+ concentration. Kinetic properties of the uptake of 0.1 μm 3H-choline in the presence and absence of medium Na+ were examined in two ways. (a) Inhibition by increasing concentrations of unlabeled choline (0.5–100 μm) was consistent with the presence of two Michaelis-Menten-type systems in the presence of Na+; a Na+-dependent portion (a mean of 0.52 of the total) had a K m for choline of 1.5 μm while K m in the absence of Na+ (Li+ substituting) was 18.6 μm. (b) Inhibition by HC-3 (0.3–300 μm) gave Ki values of 1.7 μm and 5.0 μm HC-3 for the Na+-dependent and -independent fractions. The apparent K m of the Na+-dependent uptake is lower than that reported previously for lung-derived cells and is in the range of the K m values reported for high-affinity, Na+-dependent choline uptake by neuronal cells. Received: 18 February 1997/Revised: 7 December 1997  相似文献   

3.
The dependence of currents through the cyclic nucleotide-gated (CNG) channels of mammalian olfactory receptor neurons (ORNs) on the concentration of NaCl was studied in excised inside-out patches from their dendritic knobs using the patch-clamp technique. With a saturating concentration (100 μm) of adenosine 3′, 5′-cyclic monophosphate (cAMP), the changes in the reversal potential of macroscopic currents were studied at NaCl concentrations from 25 to 300 mm. In symmetrical NaCl solutions without the addition of divalent cations, the current-voltage relations were almost linear, reversing close to 0 mV. When the external NaCl concentration was maintained at 150 mm and the internal concentrations were varied, the reversal potentials of the cAMP-activated currents closely followed the Na+ equilibrium potential indicating that P Cl/P Na≈ 0. However, at low external NaCl concentrations (≤100 mm) there was some significant chloride permeability. Our results further indicated that Na+ currents through these channels: (i) did not obey the independence principle; (ii) showed saturation kinetics with K ms in the range of 100–150 mm and (iii) displayed a lack of voltage dependence of conductance in asymmetric solutions that suggested that ion-binding sites were situated midway along the channel. Together, these characteristics indicate that the permeation properties of the olfactory CNG channels are significantly different from those of photoreceptor CNG channels. Received: 7 November 1996/Revised: 24 March 1997  相似文献   

4.
Abstract Atriplex amnicola was grown at 25, 200 or 400 mol m3 NaCl. Root tissues at different stages of development were investigated for concentrations of K+, Na+ and Mg2+, and in some cases for Cl?. Sugar and starch concentrations were measured for plants grown at 25 or 400 mol m3 NaCl. In the ‘slightly vaeuolated’ root tips, Na+ was only 40 mol m?3 at an external concentration of 400 mol m?3 NaCl. The concentrations of K+ were not affected substantially by external NaCl between 25 mol m?3 and 400 mol m?3. The ‘highly vacuolated’ root tissues had substantially higher concentrations of K+, Na+ and Cl? in plants grown at 200 and 400 mol m 3 NaCl than in plants grown at 25 mol m?3 NaCl. Concentrations of Cr and of the sum of the cations in recently expanded tissue were similar to those in the bulk of the roots, consisting mainly of old cells. However, the K+: Na+ decreased with age; at 400 mol m?3 external NaCl with a K+: Na+ of 0.012, the K+: Na+ in recently expanded 12 mm root tips was as high as 1.6, compared with 0.7 for the bulk of the roots. These ion data were used to estimate cytoplasmic and vacuolar concentrations of K+ and Na +. Such calculations indicated that between 25 mol m3 and 400 mol m?3 external NaCl the concentration of the sum of (Na++K+) in the cytoplasm was maintained at about 180–200 mol m?3 (cell water basis). In contrast, the (Na++ K+) concentration in the vacuole was 170 mol m?3 for plants grown at 25 mol m?3 NaCl and 420 mol 400 mol m?3 NaCl. The expanding root (issues exhibited greatly decreased soluble sugars and starch between dusk and dawn. Ai both times, sugar and starch concentrations in these tissues were 2.5–4.0 times greater in plants grown at 400 mol m?3 NaCl compared with plants grown at 25 mol m?3 NaCl. In contrast, carbohydrate concentrations in expanded root tissues were very similar at 25 and 400 mol m?3 and showed little diurnal fluctuation. This paper considers the causes for the slower growth of A. amnicola at 400 than at 25 mol m”3 NaCl, using the data for the roots described here, and those for the shoots presented in the preceding paper (Aslam et al., 1986). There is no support for possible adverse effects by high internal ion concentrations. Instead, there may be deficiencies in supply of organic solutes for osmotic regulation; during part of the night a limited supply of such solutes may well restrict the rate of expansion of cells in plants growing at 400 mol m?3 NaCl. There is insufficient evidence to decide whether this limitation in the expanding tissues is particularly prominent for the roots or for the shoots.  相似文献   

5.
通过农杆菌介导法将拟南芥液泡膜Na+/H+反向转运蛋白基因AtNHX1转入荞麦中,在2.0mg/L 6-BA、0.1mg/L IAA、1mg/L KT、50mg/L卡那霉素和500mg/L头孢霉素的MS培养基上进行选择培养,从来源于864块外植体的36块抗性愈伤组织中共获得426棵再生植株(转化频率为4.17%)。经PCR、Southern印迹分析、RT-PCR和Northern检测,初步证实AtNHX1基因已整合至荞麦基因组中。用200mmol/L的盐水对转基因植株和对照植株进行胁迫处理6周,转基因植株能够生存,而对照植株死亡。用不同浓度的NaCl溶液处理转基因植株和对照植株,发现Na+及脯氨酸含量在转基因植株中的积累水平显著高于对照植株,而K+的含量在转基因植株中的积累水平低于对照植株。次生代谢产物黄酮类化合物芦丁在转基因植株根、茎和叶片中的含量也比对照植株明显要高。这些结果表明利用基因工程手段提高作物的耐盐性是可行的。  相似文献   

6.
通过农杆菌介导法将拟南芥液泡膜Na+/H+反向转运蛋白基因AtNHX1转入荞麦中,在2.0mg/L 6-BA、0.1mg/L IAA、1mg/L KT、50mg/L卡那霉素和500mg/L头孢霉素的MS培养基上进行选择培养,从来源于864块外植体的36块抗性愈伤组织中共获得426棵再生植株(转化频率为4.17%)。经PCR、Southern印迹分析、RT-PCR和Northern检测,初步证实AtNHX1基因已整合至荞麦基因组中。用200mmol/L的盐水对转基因植株和对照植株进行胁迫处理6周,转基因植株能够生存,而对照植株死亡。用不同浓度的NaCl溶液处理转基因植株和对照植株,发现Na+及脯氨酸含量在转基因植株中的积累水平显著高于对照植株,而K+的含量在转基因植株中的积累水平低于对照植株。次生代谢产物黄酮类化合物芦丁在转基因植株根、茎和叶片中的含量也比对照植株明显要高。这些结果表明利用基因工程手段提高作物的耐盐性是可行的。  相似文献   

7.
Abstract Atriplex amnicola, was grown in nutrient solution cultures with concentrations of NaCl up to 750 mol m?3. The growth optimum was at 25–50 mol m?3 NaCl and growth was 10–15% of that value at 750 mol m?3 NaCl. Sodium chloride at 200 mol m?3 and higher reduced the rate of leaf extension and increased the time taken for a leaf to reach its maximal length. Concentrations of Na+, K+ and Mg2+ in leaves of different ages were investigated for plants grown at 25, 200 and 400 mol m?3 NaCl. Although leaves of plants grown at 200 and 400 mol m?3 NaCl had high Na+ concentrations at young developmental stages, much of this Na+ was located in the salt bladders. Leaves excluding bladders had low Na+ concentrations when young, but very high in Na+ when old. In contrast to Na+, K+ concentrations were similar in bladders and leaves excluding bladders. Concentrations of K+ were higher in the rapidly expanding than in the old leaves. At 400 mol m?3 NaCl, the K+:Na+ ratios of the leaves excluding bladders were 0.4–0.6 and 0.1 for rapidly expanding and oldest leaves, respectively. The Na+ content in moles per leaf, excluding bladders, increased linearly with the age of the leaves; concurrent increases in succulence were closely correlated with the Na + concentration in the leaves excluding the bladders. Soluble sugars and starch in leaves, stems and buds were determined at dusk and dawn. There was a pronounced diurnal fluctation in concentrations of carbohydrates. During the night, most plant parts showed large decreases in starch and sugar. Concentrations of carbohydrates in most plant organs were similar for plants grown at 25 and 400 mol m?3 NaCl. One notable exception was buds at dusk, where sugar and starch concentrations were 30–35% less in plants grown at 400 mol m?3 NaCl than in plants grown at 25 mol m?3 NaCl. The data indicate that the growth of A. amnicola at 400 mol m?3 NaCl is not limited by the availability of photosynthate in the plant as a whole. However, there could have been a growth limitation due to inadequate organic solutes for osmotic regulation.  相似文献   

8.
Bean plants (Phaseolus vulgaris) were very sensitive to moderate concentrations of NaCl, showing a dramatic decrease in their K+ content in the presence of this salt. Increasing the KCl content of the nutrient medium released the inhibitory effect of NaCl by increasing the K+ content of the plants. Likewise moderate concentrations of KCl were toxic for bean plants because they produced a large K+ loading. NaCl partially released this toxicity by inhibiting the K+ loading. When compared to the moderately salt tolerant sunflower plants (Helianthus annuus), bean plants showed a lower capacity to discriminate between K+ and Na+, at high Na+ levels, and an uncontrolled K+ uptake at moderate concentrations of K+. It is concluded that this low capacity of discrimination of the K+ uptake system of bean plants in presence of Na+ can account for by the NaCl sensitivity of bean plants.  相似文献   

9.
An NaCl-resistant line has been developed from suspension-cultured tobacco cells (Nicotiana tabacum/gossii) by stepwise increases in the NaCl concentration in the medium. Resistance showed stability through at least 24 generations in the absence of added NaCl.

Above an external NaCl concentration of 35 millimolar, proline concentration in the selected cells rose steeply with external NaCl, particularly so above 100 millimolar NaCl. Proline accumulation in the wild type was far slighter. Selected cells which had been grown for 24 generations in the absence of added NaCl accumulated proline strongly on re-exposure to NaCl medium, indicating stability of this character. Proline accumulation was fully reversible with a half-time of about 6 hours. When selected cells were transferred sequentially to lower and lower NaCl concentrations, their proline content fell to the level corresponding to the new NaCl concentration. The NaCl-selected cells responded to water stress (i.e. added mannitol) by accumulating markedly more proline than did the wild type.

The addition of Ca2+ to the growing and rinsing media minimized Na+ and K+ binding in the Donnan free space of cell walls and thus allowed assessment of intracellular Na+ and K+. In both cell types, internal Na+ content rose steadily as a function of external NaCl concentration. In the course of 7 days in NaCl media, the wild type cells lost a considerable part of their K+ content, the extent of the loss increasing with rise in external NaCl concentration. The selected cells, by contrast, lost no K+ at external NaCl concentrations below 50 millimolar external NaCl, and at higher concentrations lost less than the wild type.

  相似文献   

10.
Callus cultures were initiated from seedling root segments ofmungbean (Vigna radiata (L.) Wilczek var. radiata) cv. K 851on modified PC-L2 basal medium. Growing cells were exposed toincreasing concentrations of NaCl in the medium. A concentrationof 300 mol m–3 NaCl proved completely inhibitory to growthof the calli. On incubation for 25 d, cells which could toleratethis concentration of NaCl grew to form cell clones. Selectedclones were characterized with regard to their growth behaviour,K+, Na+ and free proline content when grown under stress aswell as on normal media and were compared with the normal sensitivecallus. The selected callus was capable of growing on mediumcontaining NaCl at the inhibitory concentration. The K+ contentof the selected callus was lower in the case of the NaCl mediumthan for the normal medium. However, the selected clones maintainedhigher K+ and Na+ levels, with increased salinization comparedwith the wild-type cells. Salt-selected cells accumulated higherlevels of free proline under NaCl stress compared to wild-typecells. Under normal conditions, however, the amounts of freeproline in selected and non-selected calli were comparable. Key words: Vigna radiata, callus culture, NaCl stress  相似文献   

11.
The NHE-1 isoform of the Na+/H+ exchanger is excessively activated in cardiac cells during ischemia. Hence NHE-1 specific inhibitors are being developed since they could be of beneficial influence under conditions of cardiac ischemia and reperfusion. In this study, the Cytosensor™ microphysiometer was used to measure the potency of four new drug molecules, i.e., EMD 84021, EMD 94309, EMD 96785 and HOE 642 which are inhibitors of the isoform 1 of the Na+/H+ exchanger. The experiments were performed with Chinese hamster ovary cells (CHO K1) which are enriched in the NHE-1 isoform of the Na+/H+ antiporter. The Na+/H+ exchanger was stimulated with NaCl and the rate of extracellular acidification was quantified with the Cytosensor. The proton exchange rate was measured as a function of the NaCl concentration in the range of 10–138 mm NaCl stimulation. The proton exchange rate followed Michaelis-Menten kinetics with a K M = 30 ± 4 mm for Na+. Addition of either one of the four inhibitors decreased the acidification rate. The IC50 values of the four compounds could be determined as 23 ± 7 nm for EMD 84021, 5 ± 1 nm for EMD 94309, 9 ± 2 nm for EMD 96785 and 8 ± 2 nm for HOE 642 at 138 mm NaCl, in good agreement with more elaborate biological assays. The IC50 values increased with the NaCl concentration indicating competitive binding of the inhibitor. The microphysiometer approach is a fast and simple method to measure the activity of the Na+/H+ antiporter and allows a quantitative kinetic analysis of the proton excretion rate. Received: 3 September 1998/Revised: 20 November 1998  相似文献   

12.
 Soil salinity markedly suppresses the growth of rice (Oryza sativa L.). We established rice anther culture to select for rice callus lines adapted to NaCl stress and regenerated plant progenies resistant to a NaCl stress of E.C. 16–18 mS. When exposed to NaCl, NaCl-adapted rice calli lost K+ and accumulated little Na+. Conversely, plant cells lost relatively little K+ and accumulated Na+. It is plausible that, NaCl-resistant mechanisms are different at callus and plant level. The stable NaCl-resistant lines produced have potential use in elucidating the molecular mechanisms behind NaCl resistance in rice and in rice breeding. Received: 27 February 1997 / Accepted: 4 April 1997  相似文献   

13.
Salinity restricts crop productivity in many arid environments. Inadvertent selection for tolerance to osmotic stress may occur under cell or tissue culture conditions and could affect the performance of regenerated plants. The effect of NaCl on forage produced by alfalfa (Medicago sativa L.) plants regenerated from non-saline callus cultures was examined in this study. Plants of Regen-S, which was selected for improved callus growth and regeneration in non-saline cultures, had higher forage weight when grown on SHII medium at NaCl levels up to 100 mM compared to its parental cultivars, Saranac and DuPuits. Five additional original-regenerant plant pairs, each derived from non-saline callus cultures of different alfalfa plants, were evaluated in a solid (soil-like) substrate under saline and non-saline conditions. Weight of forage produced by rooted stem cuttings of regenerated plants was 33% higher at 50 mM NaCl compared to cuttings of explant donor plants. Self progenies from four of five regenerants had higher relative forage weight at 100 mM NaCl (percent of 0 NaCl treatment) than the original plants indicating increased NaCl tolerance.  相似文献   

14.
Salt tolerance was studied in the callus cultures of Suaeda nudiflora Moq. a dicotyledonous succulent halophyte. Growth was significantly inhibited at 50, 100, 150 and 200 mM NaCl. Inorganic ions and proline accumulated in response to salinity. Ion accumulation pattern reflected the utilization of Na+ as an osmoticum. Na+/K+ ratio rose steadily as a function of external NaCl concentration. Salt stress enhanced the activity of peroxidase, whereas it decreased activities of superoxide dismutase and catalase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Selected NaCl tolerant and unselected control lines ofHolcus lanatus L.,Lolium perenne L.,Dactylis glomerata L., andFestuca rubra L. were grown in sand culture at 0, 100, 200, 250, and/or 300 ml m-3NaCl for seven weeks. The tolerant lines of all four species produced significantly greater both shoot and root dry matter at all NaCl treatments compared with the unselected control lines. Na+, K+, Cl-, Ca2+, and Mg2+ contents of leaf, stalk, and roots of each species were determined. The tolerant lines ofH. lanatus contained less Na+ and less Ca2+ but higher K+ in shoots, compared with the unselected line. By contrast theL. perenne tolerant line had higher Na+ and Cl- contents at 250, and 300 mol m-3 NaCl in shoots than the unselected line suggesting a halophytic nature of the tolerant line.D. glomerata accumulated greater quantities of ions compared with the other species examined. The tolerant line contained significantly less Cl- but more K+ in its shoots than the unselected line. Na+, Cl-, and K+ contents in the shoots of the tolerant line ofF.rubra were higher than in the unselected line shoots. Therefore selection for NaCl tolerance may provide useful material for examining the basis of tolerance.  相似文献   

16.
In frog red blood cells, K-Cl cotransport (i.e., the difference between ouabain-resistant K fluxes in Cl and NO3) has been shown to mediate a large fraction of the total K+ transport. In the present study, Cl-dependent and Cl-independent K+ fluxes via frog erythrocyte membranes were investigated as a function of external and internal K+ ([K+] e and [K+] i ) concentration. The dependence of ouabain-resistant Cl-dependent K+ (86Rb) influx on [K+] e over the range 0–20 mm fitted the Michaelis-Menten equation, with an apparent affinity (K m ) of 8.2 ± 1.3 mm and maximal velocity (V max ) of 10.4 ± 1.6 mmol/l cells/hr under isotonic conditions. Hypotonic stimulation of the Cl-dependent K+ influx increased both K m (12.8 ± 1.7 mm, P < 0.05) and V max (20.2 ± 2.9 mmol/l/hr, P < 0.001). Raising [K+] e above 20 mm in isotonic media significantly reduced the Cl-dependent K+ influx due to a reciprocal decrease of the external Na+ ([Na+] e ) concentration below 50 mm. Replacing [Na+] e by NMDG+ markedly decreased V max (3.2 ± 0.7 mmol/l/hr, P < 0.001) and increased K m (15.7 ± 2.1 mm, P < 0.03) of Cl-dependent K+ influx. Moreover, NMDG+ Cl substitution for NaCl in isotonic and hypotonic media containing 10 mm RbCl significantly reduced both Rb+ uptake and K+ loss from red cells. Cell swelling did not affect the Na+-dependent changes in Rb+ uptake and K+ loss. In a nominally K+(Rb+)-free medium, net K+ loss was reduced after lowering [Na+] e below 50 mm. These results indicate that over 50 mm [Na+] e is required for complete activation of the K-Cl cotransporter. In nystatin-pretreated cells with various intracellular K+, Cl-dependent K+ loss in K+-free media was a linear function of [K+] i , with a rate constant of 0.11 ± 0.01 and 0.18 ± 0.008 hr−1 (P < 0.001) in isotonic and hypotonic media, respectively. Thus K-Cl cotransport in frog erythrocytes exhibits a strong asymmetry with respect to transported K+ ions. The residual, ouabain-resistant K+ fluxes in NO3 were only 5–10% of the total and were well fitted to linear regressions. The rate constants for the residual influxes were not different from those for K+ effluxes in isotonic (∼0.014 hr−1) and hypotonic (∼0.022 hr−1) media, but cell swelling resulted in a significant increase in the rate constants. Received: 19 November 1998/Revised: 23 August 1999  相似文献   

17.
Salt tolerance, a multigenic trait, necessitates knowledge about biosynthesis and function of candidate gene(s) at the cellular level. Among the osmolytes, trehalose biosynthesis in cyanobacteria facing NaCl stress is little understood. Anabaena 7120 filaments exposed to 150 mm NaCl fragmented and recovered on transfer to –NaCl medium with the increased heterocysts frequency (7%) over the control (4%). Cells failed to retain Na+ beyond a threshold [2.19 mm/cm3 (PCV)]. Whereas NaCl-stressed cells exhibited a marginal rise in K+ (1.1-fold) only at 30 h, for Na+ it was 130-fold at 48 h over cells in control. A time-course study (0–54 h) revealed reduction in intracellular Na+ beyond 48 h [0.80 mm/cm3 (PCV)] suggestive of ion efflux. The NaCl-stressed cells showed differential expression of maltooligosyltrehalose synthase (MTSase; EC 5.4.99.15) and maltooligosyltrehalose trehalohydrolase (MTHase; EC 3.2.1.141) depending on the time and the extent of intracellular Na+ buildup.  相似文献   

18.
We isolated PhaHAK2 cDNAs from salt-tolerant and salt-sensitive reed plants. PhaHAK2 belongs to group II by phylogenetic analysis, and was predicted to be a high-affinity plasma membrane K+ transporter. Yeast transformed with the PhaHAK2-u from salt-sensitive reed plants (Phragmites australis) had a decreased ability to take up K+ in the presence of NaCl and showed a higher Na+ permeability than yeast transformed with PhaHAK2-n or PhaHAK2-e from two salt-tolerant reed plants. These results suggest a possibility that the continuous K+ uptake by PhaHAK2 and maintenance of high K+/Na+ ratio under salt stress condition is one of the causes of the salt-tolerance in reed plants.  相似文献   

19.
We have characterized a Na+/H+ exchanger in the membrane of isolated zymogen granules (ZG) from rat exocrine pancreas and investigated its role in secretagogue-induced enzyme secretion. ZG Na+/H+ exchanger activity was estimated by measuring Na+ or Li+ influx and consequent osmotic swelling and lysis of ZG incubated in Na- or Li-acetate. Alternatively, intragranule pH was investigated by measuring absorbance changes in ZG which had been preloaded with the weak base acridine orange. Na+- or Li+-dependent ZG lysis was enhanced by increasing inward to outward directed H+ gradients. Na+-dependent ZG lysis was not prevented by an inside-positive K+ diffusion potential generated by valinomycin which argues against parallel operation of separate electrogenic Na+ and H+ permeabilities and for coupled Na+/H+ exchange through an electroneutral carrier. Na+- and Li+-dependent ZG lysis was inhibited by EIPA (EC50∼25 μm) and benzamil (EC50∼100 μm), but only weakly by amiloride. Similarly, absorbance changes due to release of acridine orange from acidic granules into the medium were obtained with Na+ and Li+ salts only, and were inhibited by EIPA, suggesting the presence of a Na+/H+ exchanger in the membrane. Na+ dependent lysis of ZG was inhibited by 0.5 mm MgATP and MgATP-γ-S by about 60% and 35%, respectively. Inhibition by MgATP was prevented by incubation of ZG with alkaline phosphatase (100 U/ml), or by the calmodulin antagonists calmidazolium (0.75 μm), trifluoperazine (100 μm) and W-7 (500 μm), suggesting that the ZG Na+/H+ exchanger is regulated by a ZG membrane-bound calmodulin-dependent protein kinase. Na+ dependence of secretagogue (CCK-OP)-stimulated amylase secretion was investigated in digitonin permeabilized rat pancreatic acini and was higher in acini incubated in Na+ containing buffer (30 mm NaCl/105 mm KCl buffer; 6.4 ± 0.4% of total amylase above basal) compared to buffer without Na+ (0 mm NaCl/135 mm KCl buffer; 4.7 ± 0.4% of total amylase above basal, P < 0.03). EIPA (50 μm) reduced CCK-OP-induced amylase secretion in Na+ containing buffer from 7.5 ± 0.6% to 4.1 ± 0.8% (P < 0.02). In the absence of Na+ in the buffer, CCK-OP-stimulated amylase release was not inhibited by 50 μm EIPA. The data suggest that an amiloride insensitive, EIPA inhibitable Na+/H+ exchanger is present in ZG membranes, which is stimulated by calmodulin antagonists and could be involved in secretagogue-induced enzyme secretion from rat pancreatic acini. Received: 7 December 1995/Revised: 2 April 1996  相似文献   

20.
Mitsuya S  Taniguchi M  Miyake H  Takabe T 《Planta》2005,222(6):1001-1009
For plant salt tolerance, it is important to regulate the uptake and accumulation of Na+ ions. The yeast pmp3 mutant which lacks PMP3 gene accumulates excess Na+ ions in the cell and shows increased Na+ sensitivity. Although the function of PMP3 is not fully understood, it is proposed that PMP3 contributes to the restriction of Na+ uptake and consequently salt tolerance in yeasts. In this paper, we have investigated whether the lack of RCI2A gene, homologous to PMP3 gene, causes a salt sensitive phenotype in Arabidopsis (Arabidopsis thaliana (L.) Heynh.) plants; and to thereby indicate the physiological role of RCI2A in higher plants. Two T-DNA insertional mutants of RCI2A were identified. Although the growth of rci2a mutants was comparable with that of wild type under normal conditions, high NaCl treatment caused increased accumulation of Na+ and more reduction of the growth of roots and shoots of rci2a mutants than that of wild type. Undifferentiated callus cultures regenerated from rci2a mutants also accumulated more Na+ than that from wild type under high NaCl treatment. Furthermore, when wild-type and rci2a plants were treated with NaCl, NaNO3, Na2SO4, KCl, KNO3, K2SO4 or LiCl, the rci2a mutants showed more reduction of shoot growth than wild type. Under treatments of tetramethylammonium chloride, CaCl2, MgCl2, mannitol or sorbitol, the growth reduction was comparable between wild-type and rci2a plants. These results suggested that RCI2A plays a role directly or indirectly for avoiding over-accumulation of excess Na+ and K+ ions in plants, and contributes to salt tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号