首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The metabolism of 14C-acetate was investigated during the in vitro germination of yellow lupine seeds. Carbon atoms (14C) from the C-2 position of acetate were incorporated mainly into amino acids: aspartate, glutamate, and glutamine and into sugars: glucose, sucrose, and fructose. In contrast to this, 14C from the C-1 position of acetate was released mainly as 14CO2. Incorporation of 1-14C and 2-14C from acetate into amino acids and sugars in seedling axes was more intense when sucrose was added to the medium. However, in cotyledons where lipids are converted to carbohydrates, this process was inhibited by exogenous sucrose. Since acetate is the product of fatty acid beta-oxidation, our results indicate that, at least in lupine, seed storage lipids can be converted not only to sucrose, but mainly to amino acids. Inhibitory effects of sucrose on the incorporation of 14C from acetate into amino acids and sugars in cotyledons of lupine seedlings may be explained as the effect of regulation of the glyoxylate cycle by sugars.  相似文献   

3.
We tested the hypothesis that peroxisomal citrate synthase (CSY) is required for carbon transfer from peroxisomes to mitochondria during respiration of triacylglycerol in Arabidopsis thaliana seedlings. Two genes encoding peroxisomal CSY are expressed in Arabidopsis seedlings, and seeds from plants with both CSY genes disrupted were dormant and did not metabolize triacylglycerol. Germination was achieved by removing the seed coat and supplying sucrose, but the seedlings still did not use triacylglycerol. The mutant seedlings were resistant to 2,4-dichlorophenoxybutyric acid, indicating a block in peroxisomal beta-oxidation, and were unable to develop further after transfer to soil. The mutant phenotype was complemented with a cDNA encoding CSY with either its native peroxisomal targeting sequence (PTS2) or a heterologous PTS1 sequence from pumpkin (Cucurbita pepo) malate synthase. These results suggest that peroxisomal CSY in Arabidopsis is not only a key enzyme of the glyoxylate cycle but also catalyzes an essential step in the respiration of fatty acids. We conclude that citrate is exported from the peroxisome during fatty acid respiration, whereas in yeast, acetylcarnitine is exported.  相似文献   

4.
Arabidopsis expressing the castor bean (Ricinus communis) oleate 12-hydroxylase or the Crepis palaestina linoleate 12-epoxygenase in developing seeds typically accumulate low levels of ricinoleic acid and vernolic acid, respectively. We have examined the presence of a futile cycle of fatty acid degradation in developing seeds using the synthesis of polyhydroxyalkanoate (PHA) from the intermediates of the peroxisomal beta-oxidation cycle. Both the quantity and monomer composition of the PHA synthesized in transgenic plants expressing the 12-epoxygenase and 12-hydroxylase in developing seeds revealed the presence of a futile cycle of degradation of the corresponding unusual fatty acids, indicating a limitation in their stable integration into lipids. The expression profile of nearly 200 genes involved in fatty acid biosynthesis and degradation has been analyzed through microarray. No significant changes in gene expression have been detected as a consequence of the activity of the 12-epoxygenase or the 12-hydroxylase in developing siliques. Similar results have also been obtained for transgenic plants expressing the Cuphea lanceolata caproyl-acyl carrier protein thioesterase and accumulating high amounts of caproic acid. Only in developing siliques of the tag1 mutant, deficient in the accumulation of triacylglycerols and shown to have a substantial futile cycling of fatty acids toward beta-oxidation, have some changes in gene expression been detected, notably the induction of the isocitrate lyase gene. These results indicate that analysis of peroxisomal PHA is a better indicator of the flux of fatty acid through beta-oxidation than the expression profile of genes involved in lipid metabolism.  相似文献   

5.
Synthesis of polyhydroxyalkanoates (PHAs) from intermediates of fatty acid beta-oxidation was used as a tool to study fatty acid degradation in developing seeds of Arabidopsis. Transgenic plants expressing a peroxisomal PHA synthase under the control of a napin promoter accumulated PHA in developing seeds to a final level of 0. 06 mg g(-1) dry weight. In plants co-expressing a plastidial acyl-acyl carrier protein thioesterase from Cuphea lanceolata and a peroxisomal PHA synthase, approximately 18-fold more PHA accumulated in developing seeds. The proportion of 3-hydroxydecanoic acid monomer in the PHA was strongly increased, indicating a large flow of capric acid toward beta-oxidation. Furthermore, expression of the peroxisomal PHA synthase in an Arabidopsis mutant deficient in the enzyme diacylglycerol acyltransferase resulted in a 10-fold increase in PHA accumulation in developing seeds. These data indicate that plants can respond to the inadequate incorporation of fatty acids into triacylglycerides by recycling the fatty acids via beta-oxidation and that a considerable flow toward beta-oxidation can occur even in a plant tissue primarily devoted to the accumulation of storage lipids.  相似文献   

6.
E. Wiberg  A. Banas  S. Stymne 《Planta》1997,203(3):341-348
The fatty acid composition and content of membrane and storage lipids of two transgenic laurate-producing rape (Brassica napus L.) lines were monitored during seed development. The two lines, the medium-laurate (ML) line and the high-laurate (HL) line, accumulated 34 mol% and 55 mol% of laurate in their seed triacylglycerols, respectively. The diacylglycerols contained about 17 and 33 mol% of laurate in the ML- and HL-lines, respectively, from the mid-stage of seed development up to seed maturity. The ML-line showed a maximal relative laurate content in phosphatidylcholine (17 mol%) at the mid-stage of seed development whereafter the content decreased to 2.7 mol% with seed maturity. The laurate content in phosphatidylcholine was observed to remain high (26 mol%) in the HL-line from the mid-stage to the end of triacylglycerol deposition. Thereafter, the relative content decreased and reached 6.6 mol% in the mature seeds. There was an enhanced activity of lauroyl-phosphatidylcholine- metabolizing enzymes in the seed membranes from laurate-producing lines compared with control lines, which might explain the decrease seen in laurate content in phosphatidylcholine during seed maturation. A comparison of the laurate distribution in the lipids from developing laurate-producing rape seeds and developing seeds from three species naturally accumulating laurate at similar levels revealed differences in laurate metabolism compared with these species. The results suggest that phospholipids and triacylglycerols are synthesized from the same diacylglycerol pool in rape seeds and that rape lysophosphatidic acid acyltransferase and diacylglycerol acyltransferase do not have the same preference for laurate substrates as the corresponding enzymes in seed tissues naturally accumulating this acyl group. In addition, the mechanisms that specifically remove or exclude laurate from membrane lipids appear less effective in rape seed than in tissues naturally evolved to synthesize laurate-rich oils. Received: 23 December 1996 / Accepted: 16 April 1997  相似文献   

7.
Inducible beta-oxidation pathway in Neurospora crassa.   总被引:5,自引:2,他引:3       下载免费PDF全文
An inducible beta-oxidation system was demonstrated in a particulate fraction from Neurospora crassa. The activities of all individual beta-oxidation enzymes were enhanced in cells after a shift from a sucrose to an acetate medium. The induction was even more pronounced in transfer to a medium containing oleate as sole carbon and energy source. Since an acyl-coenzyme A (CoA) dehydrogenase was detected instead of acyl-CoA oxidase, the former enzyme seems to catalyze the first step of the beta-oxidation sequence in N. crassa. After isopycnic centrifugation in a linear sucrose gradient, the intracellular organelles housing the fatty acid degradation pathway cosedimented (1.21 g/cm3) with the glyoxylate bypass enzymes isocitrate lyase and malate synthase and were clearly resolved from both mitochondrial marker enzymes (1.19 g/cm3) and catalase (1.26 g/cm3). On the basis of biochemical as well as morphological properties, these particles from N. crassa have recently been designated as glyoxysome-like particles (G. Wanner and T. Theimer, Ann. N.Y. Acad. Sci. 386:269-284, 1982). The failure to detect catalase, urate oxidase, and acyl-CoA oxidase indicate that these glyoxysome-like microbodies in N. crassa lack peroxisomal function and thus are clearly different from the various microbodies reported so far to contain a beta-oxidation pathway.  相似文献   

8.
Peroxisomal malate dehydrogenase (PMDH) oxidises NADH produced by fatty acid beta-oxidation during seed germination and seedling growth. Arabidopsis thaliana beta-oxidation mutants exhibit seed dormancy or impaired seed germination and failure of seedlings to degrade triacylglycerol (TAG), but the pmdh1 pmdh2 null mutant germinates readily and degrades TAG slowly during seedling growth. We reasoned that in the pmdh1 pmdh2 mutant an alternative means of oxidising NADH operates to allow a slow rate of beta-oxidation, such as NADH and NAD+ transport across the peroxisomal membrane or activity of another peroxisomal oxido-reductase. Here we show that peroxisomal hydroxypyruvate reductase (HPR) is present in germinating seeds and although knocking out HPR has little effect on germination and early seedling growth, when knocked out in combination with PMDH it exacerbates the pmdh1 pmdh2 phenotype. It greatly increases the proportion of dormant seeds and reduces the rate of seed germination. Seedlings have increased sucrose dependence and resistance to 2,4-dichlorophenoxybutyric acid (2,4-DB), and slower rate of TAG breakdown. When PMDH is absent, malate is lower in amount in germinating seeds and when HPR is also absent, serine (the immediate precursor of hydroxypyruvate) is much higher. These results indicate that HPR can oxidise NADH at sufficient rate in the absence of PMDH to support beta-oxidation and hence seed germination. We conclude that while HPR normally plays little role in seed germination our results support the growing body of evidence that peroxisomal NADH cannot be exported to the cytosol for oxidation but is oxidised by resident oxido-reductases.  相似文献   

9.
Although peroxisomes are difficult to identify in Saccharomyces cerevisiae under ordinary growth conditions, they proliferate when cells are cultured on oleic acid. We used this finding to study the protein composition of these organelles in detail. Peroxisomes from oleic acid-grown cells were purified on a discontinuous sucrose gradient; they migrated to the 46 to 50% (wt/wt) sucrose interface. The peroxisomal fraction was identified morphologically and by the presence of all of the enzymes of the peroxisomal beta-oxidation pathway. These organelles also contained a significant but minor fraction of two enzymes of the glyoxylate pathway, malate synthase and malate dehydrogenase-2. The localization of malate synthase in peroxisomes was confirmed by immunoelectron microscopy. It is postulated that glyoxylate pathway enzymes are readily and preferentially released from peroxisomes upon cell lysis, accounting for their incomplete recovery from isolated organelles. Small uninduced peroxisomes from glycerol-grown cultures were detected on sucrose gradients by marker enzymes. Under these conditions, catalase, acyl-coenzyme A oxidase, and malate synthase cofractionated at equilibrium close to the mitochondrial peak, indicating smaller, less dense organelles than those from cells grown on oleic acid. Peroxisomal membranes from oleate cultures were purified by buoyant density centrifugation. Three abundant proteins of 24, 31, and 32 kilodaltons were observed.  相似文献   

10.
11.
12.
Sinapine (O-sinapoylcholine) is the predominant phenolic compound in a complex group of sinapate esters in seeds of oilseed rape (Brassica napus). Sinapine has antinutritive activity and prevents the use of seed protein for food and feed. A strategy was developed to lower its content in seeds by expressing an enzyme that hydrolyzes sinapine in developing rape seeds. During early stages of seedling development, a sinapine esterase (BnSCE3) hydrolyzes sinapine, releasing choline and sinapate. A portion of choline enters the phospholipid metabolism, and sinapate is routed via 1-O-sinapoyl-β-glucose into sinapoylmalate. Transgenic oilseed rape lines were generated expressing BnSCE3 under the control of a seed-specific promoter. Two distinct single-copy transgene insertion lines were isolated and propagated to generate homozygous lines, which were subjected to comprehensive phenotyping. Sinapine levels of transgenic seeds were less than 5% of wild-type levels, whereas choline levels were increased. Weight, size, and water content of transgenic seeds were significantly higher than those of wild-type seeds. Seed quality parameters, such as fiber and glucosinolate levels, and agronomically important traits, such as oil and protein contents, differed only slightly, except that amounts of hemicellulose and cellulose were about 30% higher in transgenic compared with wild-type seeds. Electron microscopic examination revealed that a fraction of the transgenic seeds had morphological alterations, characterized by large cavities near the embryonic tissue. Transgenic seedlings were larger than wild-type seedlings, and young seedlings exhibited longer hypocotyls. Examination of metabolic profiles of transgenic seeds indicated that besides suppression of sinapine accumulation, there were other dramatic differences in primary and secondary metabolism. Mapping of these changes onto metabolic pathways revealed global effects of the transgenic BnSCE3 expression on seed metabolism.  相似文献   

13.
Previous attempts to manipulate oil synthesis in plants have mainly concentrated on the genes involved in the biosynthesis and use of fatty acids, neglecting the possible role of glycerol-3-phosphate supply on the rate of triacylglycerol synthesis. In this study, a yeast gene coding for cytosolic glycerol-3-phosphate dehydrogenase ( gpd 1) was expressed in transgenic oil-seed rape under the control of the seed-specific napin promoter. It was found that a twofold increase in glycerol-3-phosphate dehydrogenase activity led to a three- to fourfold increase in the level of glycerol-3-phosphate in developing seeds, resulting in a 40% increase in the final lipid content of the seed, with the protein content remaining substantially unchanged. This was accompanied by a decrease in the glycolytic intermediate dihydroxyacetone phosphate, the direct precursor of glycerol-3-phosphate dehydrogenase. The levels of sucrose and various metabolites in the pathway from sucrose to fatty acids remained unaltered. The results show that glycerol-3-phosphate supply co-limits oil accumulation in developing seeds. This has important implications for strategies that aim to increase the overall level of oil in commercial oil-seed crops for use as a renewable alternative to petrol.  相似文献   

14.
Tan H  Yang X  Zhang F  Zheng X  Qu C  Mu J  Fu F  Li J  Guan R  Zhang H  Wang G  Zuo J 《Plant physiology》2011,156(3):1577-1588
The seed oil content in oilseed crops is a major selection trait to breeders. In Arabidopsis (Arabidopsis thaliana), LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) are key regulators of fatty acid biosynthesis. Overexpression of AtLEC1 and its orthologs in canola (Brassica napus), BnLEC1 and BnL1L, causes an increased fatty acid level in transgenic Arabidopsis plants, which, however, also show severe developmental abnormalities. Here, we use truncated napin A promoters, which retain the seed-specific expression pattern but with a reduced expression level, to drive the expression of BnLEC1 and BnL1L in transgenic canola. Conditional expression of BnLEC1 and BnL1L increases the seed oil content by 2% to 20% and has no detrimental effects on major agronomic traits. In the transgenic canola, expression of a subset of genes involved in fatty acid biosynthesis and glycolysis is up-regulated in developing seeds. Moreover, the BnLEC1 transgene enhances the expression of several genes involved in Suc synthesis and transport in developing seeds and the silique wall. Consistently, the accumulation of Suc and Fru is increased in developing seeds of the transgenic rapeseed, suggesting the increased carbon flux to fatty acid biosynthesis. These results demonstrate that BnLEC1 and BnL1L are reliable targets for genetic improvement of rapeseed in seed oil production.  相似文献   

15.
The history of canola breeding began with the discovery of germplasm with low erucic acid content in seeds of spring forage cultivar in the 1950's.FAE1 mutations led to a dramatic decrease of the seed erucic acid content in Arabidopsis thaliana.The products of the two FAE1 loci,BnA8.FAE1 and BnC3.FAE1,showed additive effects to the level of erucic acid content in oilseed rape.Previous research believed that the pleiotropy of FAE1 was responsible for the decrease in seed oil content along with the reduction ...  相似文献   

16.
Throughout the development (maturation) of mango fruit the contents of citric and glyoxylic acids increased steadily. As the fruit matured the levels of isocitrate lyase, malate lyase and alanine: glyoxylate aminotransferase increased and reached maximum values prior to the time of harvesting. At and after harvest the levels of malate lyase and alanine : glyoxylate aminotransferase began to decrease but that of isocitrate lyase remained high until after the harvest when it decreased. The level of glyoxylate reductase was highest in the early developmental stage but declined as the fruit matured and ripened. As the fruit ripened, after harvest, the amounts of citric and glyoxylic acids decreased concomitant with a considerable increase in the levels of isocitrate dehydrogenase, malic dehydrogenase, malic enzyme and glyoxylate dehydrogenase.Fatty acid oxidizing capacity of mitochondria isolated from immature (developing) and postclimacteric fruit pulps was much less than that observed with mitochondria from preclimacteric and climacteric fruit. Glyoxylate stimulated the oxidation of caprylic, lauric, myristic and palmitic acids and inhibited the activity of isocitrate dehydrogenase in vitro.  相似文献   

17.
18.
The effect of the chain length of fatty acids on peroxisomal enzyme activities of Tetrahymena pyriformis was investigated. The growth of cells and the activities of peroxisomal enzymes were inhibited markedly by the addition of medium-chain fatty acids (C6-C12) to the culture medium, whereas the addition of longer-chain fatty acids (C14-C18) resulted in a slight increase of growth and in the marked stimulation of enzyme activities concerned with fatty acid beta-oxidation and the glyoxylate cycle in peroxisomes. Peroxisomal beta-oxidation (fatty acyl-CoA oxidase) was more potent towards longer-chain fatty acids than the mitochondrial activity (fatty acyl-CoA dehydrogenase). The induction of the peroxisomal beta-oxidation system by palmitate was repressed both by the addition of glucose and the aeration of the culture medium, whereas that of the peroxisomal glyoxylate cycle was repressed only by the addition of glucose to the medium. These results indicate that peroxisomal enzyme systems related to the beta-oxidation of fatty acids and the glyoxylate cycle are regulated by the compositions of fatty acids, glucose, and oxygen in the medium.  相似文献   

19.
Medium chain hydrolase (MCH) is an enzyme which regulates the chain length of fatty acid synthesis specifically in the mammary gland of the rat. During lactation, MCH interacts with fatty acid synthase (FAS) to cause premature release of acyl chains, thus providing medium chain fatty acids for synthesis of milk fat. In this study we have investigated the ability of rat MCH to interact with the phylogenetically more distant FAS structure present in plant systems and to cause a perturbation of fatty acid synthesis. Inin vitro experiments, addition of purified MCH to rapeseed homogenates was found to cause a significant perturbation of fatty acid synthesis towards medium chain length products. The rat MCH gene was expressed in transgenic oilseed rape using a seed specific rape acyl carrier protein (ACP) promoter and a rape ACP plastid targeting sequence. Western analysis showed MCH protein to be present in transgenic seed and for its expression to be developmentally regulated in concert with storage lipid synthesis. The chimaeric preprotein was correctly processed and immunogold labelling studies confirmed MCH to be localized within plastid organelles. However, fatty acid analysis of oil from MCH-expressing rape seed showed no significant differences to that from control seed.  相似文献   

20.
Diacylglycerol acyltransferase (EC 2.3.1.20) activity was assayed during the maturation of seeds of oilseed rape (Brassica napus L.) and safflower (Carthamus tinctorius L.). Developmental studies were also conducted with microspore-derived embryos of oilseed rape (B. napus L. cv Topas) and an embryogenic microspore-derived cell-suspension culture of winter oilseed rape (B. napus L. cv Jet Neuf). In the maturing seeds, diacylglycerol acyltransferase activity increased to a maximum during rapid accumulation of lipid and declined, thereafter, with seed maturity. In microspore-derived embryos of oilseed rape (cv Topas), high levels of diacylglycerol acyltransferase activity were found throughout the early torpedo to late cotyledonary developmental stages with maximum enzyme specific activity associated with the mid-cotyledonary developmental stage. The cell-suspension culture of winter oilseed rape (cv Jet Neuf) contained 3 to 4% triacylglycerol on a dry weight basis and represented about half of the total lipid. The fatty acid profile of total lipid and triacylglycerol in the cell-suspension culture was similar in samples taken during a 1-year period. The Jet Neuf culture contained diacylglycerol acyltransferase with specific activity similar to that of Topas microspore-derived embryos. Jet Neuf diacylglycerol acyltransferase also displayed an enhanced specificity for erucoyl-CoA over oleoyl-CoA when assayed with 14 [mu]M acyl-coenzyme A in the reaction mixture. The specific activity of diacylglycerol acyltransferase in homogenates prepared from the Jet Neuf culture ranged from 5 to 15 pmol of triacylglycerol min-1 mg-1 of protein when assayed at intervals during a period of 1 year. Thus, the cell-suspension culture may represent an attractive tissue source for purification and characterization of triacyl-glycerol biosynthetic enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号