首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to traditional murine bioassay methodology, prions must be serially passaged within a new host before a stable phenotype, and therefore a strain, can be assigned. Prions often transmit with difficulty from one species to another; a property termed the transmission barrier. Transgenic mouse lines that over express prion protein (PrP) genes of different species can circumvent the transmission barrier but serial passages may still be required, particularly if unknown strains are encountered. Here we sought to investigate whether protein misfolding cyclic amplification (PMCA), an in-vitro method of PrPSc replication, could be used to replace serial passage of VRQ/VRQ classical scrapie isolates undergoing strain typing in ovine transgenic tg338 mice. Two classical scrapie field isolates that do not readily transmit to wild-type mice underwent bioassay in tg338 mice pre- and post- PMCA and the phenotype of disease in inoculated mice was compared. For one of the sources investigated, the PMCA product gave rise to the same disease phenotypes in tg338 mice as traditional bioassay, as indicated by lesion profile, IHC analysis and Western blot, whilst the second source produced phenotypic characteristics which were not identical with those that arose through traditional bioassay. These data show that differences in the efficiency of PMCA as a strain-typing tool may vary between ovine classical scrapie isolates and therefore suggest that the ability of PMCA to replace serial passage of classical scrapie in tg338 mice may depend on the strain present in the initial source.  相似文献   

2.
Prions are the infectious agents responsible for transmissible spongiform encephalopathy, and are primarily composed of the pathogenic form (PrP(Sc)) of the host-encoded prion protein (PrP(C)). Recent studies have revealed that protein misfolding cyclic amplification (PMCA), a highly sensitive method for PrP(Sc) detection, can overcome the species barrier in several xenogeneic combinations of PrP(Sc) seed and PrP(C) substrate. Although these findings provide valuable insight into the origin and diversity of prions, the differences between PrP(Sc) generated by interspecies PMCA and by in vivo cross-species transmission have not been described. This study investigated the histopathological and biochemical properties of PrP(Sc) in the brains of tga20 transgenic mice inoculated with Sc237 hamster scrapie prion and PrP(Sc) from mice inoculated with Sc237-derived mouse PrP(Sc), which had been generated by interspecies PMCA using Sc237 as seed and normal mouse brain homogenate as substrate. Tga20 mice overexpressing mouse PrP(C) were susceptible to Sc237 after primary transmission. PrP(Sc) in the brains of mice inoculated with Sc237-derived mouse PrP(Sc) and in the brains of mice inoculated with Sc237 differed in their lesion profiles and accumulation patterns, Western blot profiles, and denaturant resistance. In addition, these PrP(Sc) exhibited distinctive virulence profiles upon secondary passage. These results suggest that different in vivo and in vitro environments result in propagation of PrP(Sc) with different biological properties.  相似文献   

3.
The dynamics of the circulation and distribution of transmissible spongiform encephalopathy (TSE) agents in the blood of infected individuals remain largely unknown. This clearly limits the understanding of the role of blood in TSE pathogenesis and the development of a reliable TSE blood detection assay. Using two distinct sheep scrapie models and blood transfusion, this work demonstrates the occurrence of a very early and persistent prionemia. This ability to transmit disease by blood transfusion was correlated with the presence of infectivity in white blood cells (WBC) and peripheral blood mononucleated cells (PBMC) as detected by bioassay in mice overexpressing the ovine prion protein PrP (tg338 mice) and with the identification of abnormal PrP in WBC after using protein misfolding cyclic amplification (PMCA). Platelets and a large variety of leukocyte subpopulations also were shown to be infectious. The use of endpoint titration in tg338 mice indicated that the infectivity in WBC (per ml of blood) was 10(6.5)-fold lower than that in 1 g of posterior brainstem sample. In both WBC and brainstem, infectivity displayed similar resistance to PK digestion. The data strongly support the concept that WBC are an accurate target for reliable TSE detection by PMCA. The presence of infectivity in short-life-span blood cellular elements raises the question of the origin of prionemia.  相似文献   

4.
Abnormal isoform of prion proteins (PrP(Sc)), which are infectious agents associated with prion diseases, retain infectivity after undergoing routine sterilization processes. A sensitive method to detect the infectivity is a bioassay, and it has been used for assessing prion inactivation. However, the result is obtained after several hundred days. Here, protein misfolding cyclic amplification (PMCA) in which PrP(Sc) can be amplified in vitro was applied for assessing prion inactivation by dry heating and autoclaving. Scrapie-infected hamster brains were inactivated under various conditions, and residual infectivity and PrP(Sc) were detected by the bioassay and PMCA, respectively. The PMCA results were in good agreement with those of the bioassay. In samples autoclaved at temperatures below 150 degrees C, while infected mice died in the bioassay, protease-resistant PrP (PrP(res)) signals were detected in the second or third round of PMCA. Three rounds of PMCA require only 6 days, which means that the PMCA method is much faster than the bioassay.  相似文献   

5.
The conversion of cellular prion protein (PrP(C)) to the disease-associated misfolded isoform (PrP(Sc)) is an essential process for prion replication. This structural conversion can be modelled in protein misfolding cyclic amplification (PMCA) reactions in which PrP(Sc) is inoculated into healthy hamster brain homogenate, followed by cycles of incubation and sonication. In serial transmission PMCA experiments it has recently been shown that the protease-resistant PrP obtained in vitro (PrPres) is generated by an autocatalytic mechanism. Here, serial transmission PMCA experiments were compared with serial transmission reactions lacking the sonication steps. We achieved approximately 200,000-fold PrPres amplification by PMCA. In contrast, although initial amplification was comparable to PMCA reactions, PrPres levels quickly dropped below detection limit when samples were not subjected to ultrasound. These results indicate that aggregate breakage is essential for efficient autocatalytic amplification of misfolded prion protein and suggest an important role of aggregate breakage in prion propagation.  相似文献   

6.
Prions, infectious agents causing TSEs, are composed primarily of the pathogenic form (PrP(Sc)) of the PrP(C). The susceptibility of sheep to scrapie is determined by polymorphisms in the coding region of the PRNP, mainly at codons 136, 154, and 171. The efficiency of in vitro amplification of sheep PrP(Sc) seems to be linked also to the PrP genotype. PrP(Sc) derived from sheep with V(136)R(154)Q(171)-associated genotypes can be amplified efficiently by PMCA in the presence of additional polyanion such as poly A, but there are no reports that cite ultrasensitive detection of PrP(Sc) derived from sheep of other PrP genotypes. We report here that sheep PrP(Sc) derived from ARQ and AHQ homozygotes was amplified efficiently by serial PMCA using mouse brain homogenate as PrP(C) substrate. ARQ/ARQ PrP(Sc) was detected in infected brain homogenates diluted up to 10(-10) after five rounds of amplification, and AHQ/AHQ PrP(Sc) was detected in samples diluted up to 10(-8) after four rounds of amplification. On the other hand, amplification of PrP(Sc) from VRQ/ARQ sheep seemed to be less efficient under the experimental conditions used. The interspecies PMCA developed in this study may be useful in the detailed analysis of PrP(Sc) distribution in classical scrapie-infected ARQ and AHQ homozygote sheep.  相似文献   

7.
The pathogenic isoform (PrP(Sc)) of the host-encoded cellular prion protein (PrP(C)) is considered to be an infectious agent of transmissible spongiform encephalopathy (TSE). The detailed mechanism by which the PrP(Sc) seed catalyzes the structural conversion of endogenous PrP(C) into nascent PrP(Sc) in vivo still remains unclear. Recent studies reveal that bacterially derived recombinant PrP (recPrP) can be used as a substrate for the in vitro generation of protease-resistant recPrP (recPrP(res)) by protein-misfolding cyclic amplification (PMCA). These findings imply that PrP modifications with a glycosylphosphatidylinositol (GPI) anchor and asparagine (N)-linked glycosylation are not necessary for the amplification and generation of recPrP(Sc) by PMCA. However, the biological properties of PrP(Sc) obtained by in vivo transmission of recPrP(res) are unique or different from those of PrP(Sc) used as the seed, indicating that the mechanisms mediated by these posttranslational modifications possibly participate in reproductive propagation of PrP(Sc). In the present study, using baculovirus-derived recombinant PrP (Bac-PrP), we demonstrated that Bac-PrP is useful as a PrP(C) substrate for amplification of the mouse scrapie prion strain Chandler, and PrP(Sc) that accumulated in mice inoculated with Bac-PrP(res) had biochemical and pathological properties very similar to those of the PrP(Sc) seed. Since Bac-PrP modified with a GPI anchor and brain homogenate of Prnp knockout mice were both required to generate Bac-PrP(res), the interaction of GPI-anchored PrP with factors in brain homogenates is essential for reproductive propagation of PrP(Sc). Therefore, the Bac-PMCA technique appears to be extremely beneficial for the comprehensive understanding of the GPI anchor-mediated stimulation pathway.  相似文献   

8.
Classical scrapie is a prion disease in sheep and goats. In sheep, susceptibility to disease is genetically influenced by single amino acid substitutions. Genetic breeding programs aimed at enrichment of arginine-171 (171R) prion protein (PrP), the so-called ARR allele, in the sheep population have been demonstrated to be effective in reducing the occurrence of classical scrapie in the field. Understanding the molecular basis for this reduced prevalence would serve the assessment of ARR adaptation. The prion formation mechanism and conversion of PrP from the normal form (PrP(C)) to the scrapie-associated form (PrP(Sc)) could play a key role in this process. Therefore, we investigated whether the ARR allele substantially contributes to scrapie prion formation in naturally infected heterozygous 171Q/R animals. Two methods were applied to brain tissue of 171Q/R heterozygous sheep with natural scrapie to determine the relative amount of the 171R PrP fraction in PrP(res), the proteinase K-resistant PrP(Sc) core. An antibody test differentiating between 171Q and 171R PrP fragments showed that PrP(res) was mostly composed of the 171Q allelotype. Furthermore, using a novel tool for prion research, endoproteinase Lys-C-digested PrP(res) yielded substantial amounts of a nonglycosylated and a monoglycosylated PrP fragment comprising codons 114 to 188. Following two-dimensional gel electrophoresis, only marginal amounts (<9%) of 171R PrP(res) were detected. Enhanced 171R(res) proteolytic susceptibility could be excluded. Thus, these data support a nearly zero contribution of 171R PrP in PrP(res) of 171R/Q field scrapie-infected animals. This is suggestive of a poor adaptation of classical scrapie to this resistance allele under these natural conditions.  相似文献   

9.
Since variant Creutzfeldt-Jakob disease (vCJD) has been suspected to be attributable to the infectious agents associated with bovine spongiform encephalopathy (BSE), it is important to prevent the transmission of pathogenic forms of prion protein (PrP(Sc)) through contaminated feeding materials such as meat and bone meal (MBM). Here, we demonstrate that the Maillard reaction employing a formulation of glucose in combination with sodium hydrogen carbonates effectively reduced the infectivity (approximately 5.9-log reduction) of a scrapie-infected hamster brain homogenate. In addition to a bioassay, a protein misfolding cyclic amplification (PMCA) technique, in which PrP(Sc) can be amplified in vitro, was used as a rapid test for assessing PrP(Sc) inactivation. The PMCA analysis also indicated that the PrP(Sc) level in the infected material significantly decreased following the Maillard reaction. Therefore, the Maillard reaction can be employed for the decontamination of large amounts of byproducts such as MBM.  相似文献   

10.
Rapid western blot (WB) procedure for an abnormal isoform of prion protein (PrP(Sc) ) detection in lymphoid tissues was established and has been applied to the surveillance of fallen stock. In this program, brain and palatal tonsil were examined by WB and three cases of sheep scrapie were detected. While one clinically scrapie-infected sheep harbored PrP(Sc) in the brain and palatal tonsil, the two sheep in the pre-clinical stage harbored PrP(Sc) in the brain, but not in the palatal tonsil. This study shows that PrP(Sc) accumulation in palatal tonsil is variable in natural scrapie, even among genetically susceptible sheep.  相似文献   

11.
Prion diseases are associated with the presence of PrP(Sc), a disease-associated misfolded conformer of the prion protein. We report that superparamagnetic nanoparticles bind PrP(Sc) molecules efficiently and specifically, permitting magnetic separation of prions from a sample mixture. Captured PrP(Sc) molecules retain the activity to seed protein misfolding cyclic amplification (PMCA) reactions, enabling the rapid concentration of dilute prions to improve detection. Furthermore, superparamagnetic nanoparticles clear contaminated solutions of PrP(Sc). Our findings suggest that coupling magnetic nanoparticle capture with PMCA could accelerate and improve prion detection. Magnetic nanoparticles may also be useful for developing a nontoxic prion decontamination method for biologically derived products.  相似文献   

12.
The transmissible spongiform encephalopathies (TSEs) or prion diseases are a group of fatal neurodegenerative disorders characterised by the accumulation of a pathological form of a host protein known as prion protein (PrP). The validation of abnormal PrP detection techniques is fundamental to allow the use of high-throughput laboratory based tests, avoiding the limitations of bioassays. We used scrapie, a prototype TSE, to examine the relationship between infectivity and laboratory based diagnostic tools. The data may help to optimise strategies to prevent exposure of humans to small ruminant TSE material via the food chain. Abnormal PrP distribution/accumulation was assessed by immunohistochemistry (IHC), Western blot (WB) and ELISA in samples from four animals. In addition, infectivity was detected using a sensitive bank vole bioassay with selected samples from two of the four sheep and protein misfolding cyclic amplification using bank vole brain as substrate (vPMCA) was also carried out in selected samples from one animal. Lymph nodes, oculomotor muscles, sciatic nerve and kidney were positive by IHC, WB and ELISA, although at levels 100–1000 fold lower than the brain, and contained detectable infectivity by bioassay. Tissues not infectious by bioassay were also negative by all laboratory tests including PMCA. Although discrepancies were observed in tissues with very low levels of abnormal PrP, there was an overall good correlation between IHC, WB, ELISA and bioassay results. Most importantly, there was a good correlation between the detection of abnormal PrP in tissues using laboratory tests and the levels of infectivity even when the titre was low. These findings provide useful information for risk modellers and represent a first step toward the validation of laboratory tests used to quantify prion infectivity, which would greatly aid TSE risk assessment policies.  相似文献   

13.
The pathobiology of atypical scrapie, a prion disease affecting sheep and goats, is still poorly understood. In a previous study, we demonstrated that atypical scrapie affecting small ruminants in Switzerland differs in the neuroanatomical distribution of the pathological prion protein (PrP(d)). To investigate whether these differences depend on host-related vs. pathogen-related factors, we transmitted atypical scrapie to transgenic mice over-expressing the ovine prion protein (tg338). The clinical, neuropathological, and molecular phenotype of tg338 mice is similar between mice carrying the Swiss atypical scrapie isolates and the Nor98, an atypical scrapie isolate from Norway. Together with published data, our results suggest that atypical scrapie is caused by a uniform type of prion, and that the observed phenotypic differences in small ruminants are likely host-dependant. Strikingly, by using a refined SDS-PAGE technique, we established that the prominent proteinase K-resistant prion protein fragment in atypical scrapie consists of two separate, unglycosylated peptides with molecular masses of roughly 5 and 8 kDa. These findings show similarities to those for other prion diseases in animals and humans, and lay the groundwork for future comparative research.  相似文献   

14.
15.
Preclinical sheep with the highly scrapie-susceptible VRQ/VRQ PRNP genotype secrete prions from the oral cavity. In order to further understand the significance of orally available prions, buccal swabs were taken from sheep with a range of PRNP genotypes and analyzed by serial protein misfolding cyclic amplification (sPMCA). Prions were detected in buccal swabs from scrapie-exposed sheep of genotypes linked to high (VRQ/VRQ and ARQ/VRQ) and low (ARR/VRQ and AHQ/VRQ) lymphoreticular system involvement in scrapie pathogenesis. For both groups, the level of prion detection was significantly higher than that for scrapie-resistant ARR/ARR sheep which were kept in the same farm environment and acted as sentinel controls for prions derived from the environment which might contaminate the oral cavity. In addition, sheep with no exposure to the scrapie agent did not contain any measurable prions within the oral cavity. Furthermore, prions were detected in sheep over a wide age range representing various stages of preclinical disease. These data demonstrate that orally available scrapie prions may be a common feature in sheep incubating scrapie, regardless of the PRNP genotype and any associated high-level accumulation of PrP(Sc) within lymphoreticular tissues. PrP(Sc) was present in buccal swabs from a large proportion of sheep with PRNP genotypes associated with relatively low disease penetrance, indicating that subclinical scrapie infection is likely to be a common occurrence. The significance of positive sPMCA reactions was confirmed by the transmission of infectivity in buccal swab extracts to Tg338 mice, illustrating the likely importance of orally available prions in the horizontal transmission of scrapie.  相似文献   

16.
Protein misfolding cyclic amplification (PMCA) provides faithful replication of mammalian prions in vitro and has numerous applications in prion research. However, the low efficiency of conversion of PrP(C) into PrP(Sc) in PMCA limits the applicability of PMCA for many uses including structural studies of infectious prions. It also implies that only a small sub-fraction of PrP(C) may be available for conversion. Here we show that the yield, rate, and robustness of prion conversion and the sensitivity of prion detection are significantly improved by a simple modification of the PMCA format. Conducting PMCA reactions in the presence of Teflon beads (PMCAb) increased the conversion of PrP(C) into PrP(Sc) from ~10% to up to 100%. In PMCAb, a single 24-hour round consistently amplified PrP(Sc) by 600-700-fold. Furthermore, the sensitivity of prion detection in one round (24 hours) increased by 2-3 orders of magnitude. Using serial PMCAb, a 1012-fold dilution of scrapie brain material could be amplified to the level detectible by Western blotting in 3 rounds (72 hours). The improvements in amplification efficiency were observed for the commonly used hamster 263K strain and for the synthetic strain SSLOW that otherwise amplifies poorly in PMCA. The increase in the amplification efficiency did not come at the expense of prion replication specificity. The current study demonstrates that poor conversion efficiencies observed previously have not been due to the scarcity of a sub-fraction of PrP(C) susceptible to conversion nor due to limited concentrations of essential cellular cofactors required for conversion. The new PMCAb format offers immediate practical benefits and opens new avenues for developing fast ultrasensitive assays and for producing abundant quantities of PrP(Sc)in vitro.  相似文献   

17.
Detection of prions in blood   总被引:15,自引:0,他引:15  
Castilla J  Saá P  Soto C 《Nature medicine》2005,11(9):982-985
Prion diseases are caused by an unconventional infectious agent termed prion, composed mainly of the misfolded prion protein (PrP(Sc)). The development of highly sensitive assays for biochemical detection of PrP(Sc) in blood is a top priority for minimizing the spread of the disease. Here we show that the protein misfolding cyclic amplification (PMCA) technology can be automated and optimized for high-efficiency amplification of PrP(Sc). We show that 140 PMCA cycles leads to a 6,600-fold increase in sensitivity over standard detection methods. Two successive rounds of PMCA cycles resulted in a 10 million-fold increase in sensitivity and a capability to detect as little as 8,000 equivalent molecules of PrP(Sc). Notably, serial PMCA enables detection of PrP(Sc) in blood samples of scrapie-afflicted hamsters with 89% sensitivity and 100% specificity. These findings represent the first time that PrP(Sc) has been detected biochemically in blood, offering promise for developing a noninvasive method for early diagnosis of prion diseases.  相似文献   

18.
In this study, prion protein (PrP) mRNA was focally detected in brain and placenta of pregnant sheep by Northern blot analysis. In addition, host-encoded cellular prion protein (PrP(C)) was observed in brain and placenta of the ruminant by Western blot analysis as well. Localization of PrP mRNA in pregnant sheep tissues was rendered possible with in situ hybridization. In sheep brain, PrP mRNA was predominantly localized within large neocortical neurons in the cerebrum, Purkinje cells and neurons of the molecular and granule cell layers in the cerebellum. In the placenta, signals were observed in the myometrium, including stratum longitudinale tunicae muscles and circular layers of muscular tunics. In the caruncle and placentome, signals were stronger by in situ hybridization. Since accumulation of the scrapie isoform PrP (PrP(Sc)) is required to PrP(C), these results suggest that brain and placenta of sheep may be important organs and sites for the conversion of PrP(C) to PrP(Sc).  相似文献   

19.
Two different scrapie prion strains with different characteristics were obtained from two sheep naturally infected with scrapie in Japan. In mice transmission, one (Tsukuba-1) showed shorter incubation periods (133+/-2 days) than the other (Tsukuba-2) (288+/-5 days). Spongiform changes and accumulation of an abnormal isoform of prion protein (PrP(Sc)) were observed throughout the brain in Tsukuba-1 inoculated mice, while the lesions and the PrP(Sc) accumulation were localized in the brain stem of mice with Tsukuba-2. Western blot analysis showed that there was no strain-specific glycoform of PrP(Sc) within these two strains. A super-infection experiment revealed that neither strain interfered with the other's propagation.  相似文献   

20.
In order to investigate the potential of voles to reproduce in vitro the efficiency of prion replication previously observed in vivo, we seeded protein misfolding cyclic amplification (PMCA) reactions with either rodent-adapted Transmissible Spongiform Encephalopathy (TSE) strains or natural TSE isolates. Vole brain homogenates were shown to be a powerful substrate for both homologous or heterologous PMCA, sustaining the efficient amplification of prions from all the prion sources tested. However, after a few serial automated PMCA (saPMCA) rounds, we also observed the appearance of PK-resistant PrP(Sc) in samples containing exclusively unseeded substrate (negative controls), suggesting the possible spontaneous generation of infectious prions during PMCA reactions. As we could not definitively rule out cross-contamination through a posteriori biochemical and biological analyses of de novo generated prions, we decided to replicate the experiments in a different laboratory. Under rigorous prion-free conditions, we did not observe de novo appearance of PrP(Sc) in unseeded samples of M109M and I109I vole substrates, even after many consecutive rounds of saPMCA and working in different PMCA settings. Furthermore, when positive and negative samples were processed together, the appearance of spurious PrP(Sc) in unseeded negative controls suggested that the most likely explanation for the appearance of de novo PrP(Sc) was the occurrence of cross-contamination during saPMCA. Careful analysis of the PMCA process allowed us to identify critical points which are potentially responsible for contamination events. Appropriate technical improvements made it possible to overcome PMCA pitfalls, allowing PrP(Sc) to be reliably amplified up to extremely low dilutions of infected brain homogenate without any false positive results even after many consecutive rounds. Our findings underline the potential drawback of ultrasensitive in vitro prion replication and warn on cautious interpretation when assessing the spontaneous appearance of prions in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号