首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:探讨采用软骨细胞外基质材料制备的定向结构软骨支架复合软骨细胞,在体外静态培养条件下生成组织工程软骨的可能性。方法:制备牛关节软骨细胞外基质材料,利用温度梯度热诱导相分离技术构建具备垂直定向孔道结构的软骨支架,同时采用传统冷冻干燥方法制备非定向支架,检测两组支架的力学性能;提取兔关节软骨细胞,分别接种两组支架,体外静态培养2周及4周后取材,对构建的组织工程软骨进行组织切片染色、生物化学分析及生物力学检测。结果:定向软骨支架的压缩弹性模量数值明显高于非定向软骨支架,体外培养时定向支架上种子细胞在3-9d内增殖高于非定向支架,差异有统计学意义(P〈0.05);体外静态培养4周后形成的两组新生组织工程软骨进行软骨特异性染色均呈阳性,在定向组新生软骨切片中在垂直方向上可见大量呈规则平行排列的粗大胶原纤维,两组新生软骨的生物化学检测包括总DNA、总GAG及总胶原含量差异无统计学意义(P〉0.05)。定向组织工程软骨压缩弹性模量在2周及4周时均高于非定向组织工程软骨,差异有统计学意义(P〈0.05)。但两组组织工程软骨上述指标均显著低于正常关节软骨(P〈0.05)。结论:软骨细胞外基质材料制备的定向结构软骨支架复合软骨细胞,在体外静态培养条件下能够成功生成具有定向纤维结构的组织工程软骨,并可以有效促进新生软骨组织力学性能的提升,在软骨组织工程中具有良好的应用前景。  相似文献   

2.
The extracellular matrix of different mammalian tissues is commonly used as scaffolds in the field of tissue engineering. One of these tissues, which has frequently been studied due to its structural and biological features, is the small intestine submucosal membrane. These research are mainly done on the porcine small intestine. However, a report has recently been published about a scaffold produced from the submucosal layer of the ovine small intestine. In the present study, ovine small intestine submucosal (OSIS) was decellularized in a modified manner and its histological, morphological, and biomechanical properties were studied. Decellularization was performed in two phases: physical and chemical. In this method, a chloroform-methanol mixture, enzymatic digestion, and a constant dose of sodium dodecyl sulfate (SDS) was used in the least agitation time and its histological property and biocompatibility were evaluated in the presence of adipose tissue-derived stem cells (ADSCs); furthermore, ADSCs were isolated with a simple method (modified physical washing non-enzymatic isolation). The results were showed that the use of OSIS could be effective and operative. Mechanical properties, histological structure and shape, and glycosaminoglycan content were preserved. In the SDS-treated group, more than 90% of the native cells of tissue were deleted, and also in this group, no toxicity was observed and cell proliferation was supported, compared to the untreated group. Therefore, our results indicate that ADSCs seeded on OSIS scaffold could be used as a new approach in regenerative medicine as hybrid or hydrogel application.  相似文献   

3.
To analyze the effects of decellularization on the biomechanical properties of porcine common carotid arteries, decellularization was performed by a detergent-enzymatic procedure that preserves extracellular matrix scaffold. Internal diameter, external diameter, and wall thickness were measured by optical microscopy on neighboring histological sections before and after decellularization. Rupture tests were conducted. Inner diameter and wall thickness were measured by echo tracking during pressure inflation from 10 to 145 mmHg. Distensibility and incremental elastic modulus were computed. At 10 mmHg, mean diameter of decellularized arteries was 5.38 mm, substantially higher than controls (4.1 mm), whereas decellularized and control arteries reached the same internal diameter (6.7 mm) at 145 mmHg. Wall thickness decreased 16% for decellularized and 32% for normal arteries after pressure was increased from 10 to 145 mmHg. Decellularized arteries withstood pressure >2,200 mmHg before rupture. At 145 mmHg, decellularization reduced compliance by 66% and increased incremental elastic modulus by 54%. Removal of cellular elements from media led to changes in arterial dimensions. Collagen fibers engaged more rapidly during inflation, yielding a stiffer vessel. Distensibility was therefore significantly lower (by a factor of 3) in decellularized than in normal vessels: reduced in the physiological range of pressures. In conclusion, decellularization yields vessels that can withstand high inflation pressures with, however, markedly different geometrical and biomechanical properties. This may mean that the potential use of a decellularized artery as a scaffold for the creation of xenografts may be compromised because of geometrical and compliance mismatch.  相似文献   

4.
Zhu Y  Dong Z  Wejinya UC  Jin S  Ye K 《Journal of biomechanics》2011,44(13):2356-2361
While the determination of mechanical properties of a hard scaffold is relatively straightforward, the mechanical testing of a soft tissue scaffold poses significant challenges due in part to its fragility. Here, we report a new approach for characterizing the stiffness and elastic modulus of a soft scaffold through atomic force microscopy (AFM) nanoindentation. Using collagen-chitosan hydrogel scaffolds as model soft tissue scaffolds, we demonstrated the feasibility of using AFM nanoindentation to determine a force curve of a soft tissue scaffold. A mathematical model was developed to ascertain the stiffness and elastic modulus of a scaffold from its force curve obtained under different conditions. The elastic modulus of a collagen-chitosan (80%/20%, v/v) scaffold is found to be 3.69 kPa. The scaffold becomes stiffer if it contains more chitosan. The elastic modulus of a scaffold composed of 70% collagen and 30% chitosan is about 11.6 kPa. Furthermore, the stiffness of the scaffold is found to be altered significantly by extracellular matrix deposited from cells that are grown inside the scaffold. The elastic modulus of collagen-chitosan scaffolds increased from 10.5 kPa on day 3 to 63.4 kPa on day 10 when human foreskin fibroblast cells grew inside the scaffolds. Data acquired from these measurements will offer new insights into understanding cell fate regulation induced by physiochemical cues of tissue scaffolds.  相似文献   

5.
Recent advances in tissue engineering have led to potential new strategies, especially decellularization protocols from natural tissues, for the repair, replacement, and regeneration of intervertebral discs. This study aimed to validate our previously reported method for the decellularization of annulus fibrosus (AF) tissue and to quantify potentially antigenic α-Gal epitopes in the decellularized tissue. Porcine AF tissue was decellularized using different freeze–thaw temperatures, chemical detergents, and incubation times in order to determine the optimal method for cell removal. The integrity of the decellularized material was determined using biochemical and mechanical tests. The α-Gal epitope was quantified before and after decellularization. Decellularization with freeze–thaw in liquid nitrogen, an ionic detergent (0.1% SDS), and a 24 h incubation period yielded the greatest retention of GAG and collagen relative to DNA reduction when tested as single variables. Combined, these optimal decellularization conditions preserved more GAG while removing the same amount of DNA as the conditions used in our previous study. Components and biomechanical properties of the AF matrix were retained. The decellularized AF scaffold exhibited suitable immune-compatibility, as evidenced by successful in vivo remodeling and a decrease in the α-Gal epitope. Our study defined the optimal conditions for decellularization of porcine AF tissues while preserving the biological composition and mechanical properties of the scaffold. Under these conditions, immunocompatibility was evidenced by successful in vivo remodeling and reduction of the α-Gal epitope in the decellularized material. Decellularized AF scaffolds are potential candidates for clinical applications in spinal surgery.  相似文献   

6.
Organ decellularization is emerging as a promising regenerative medicine approach as it is able to provide an acellular, three-dimensional biological scaffold material that can be seeded with living cells for organ reengineering. However this application is currently limited to donor-derived decellularized organs for reengineering in vitro and no study has been conducted for re-engineering the decellularized organ in vivo. We developed a novel technique of a single liver lobe decellularization in vivo in live animals. Using a surgical method to generate a by-pass circulation through the portal vein and infra-hepatic vena cava with a perfusion chamber system, we decellularized the single liver lobe and recellularized it with allogenic primary hepatocytes. Our results showed that the decellularization process in vivo can preserve the vascular structural network and functional characteristics of the native liver lobe. It allows for efficient recellularization of the decellularized liver lobe matrix with allogenic primary hepatocytes. Upon the re-establishment of blood circulation, the recellularized liver lobe is able to gain the function and the allogenic hepatocytes are able to secret albumin. Our findings provide a proof of principle for the in vivo reengineering of liver.  相似文献   

7.
脱细胞基质(decellularized extracellular matrix, dECM)旨在去除引起免疫排斥的细胞,保留原组织结构和成分。由于其具有与原组织器官相似的结构和成分,在组织工程和生物医学的应用上受到广泛关注,已成为一种很有前景的生物医学材料。通过适当的脱细胞方法,dECM很容易能够从组织器官中获得。文中总结了脱细胞的方法及最新研究进展,同时对脱细胞后支架灭菌、交联和保存的方式进行综述,概括了不同组织器官获得的脱细胞支架的最新应用及进展。最后对脱细胞支架目前面临的问题和挑战进行分析,并展望了未来的发展趋势。  相似文献   

8.
侯楠  朱力 《生物磁学》2011,(2):381-383
去细胞基质在组织工程及再生医学的大量应用为解决组织器官的修复和重建等难题带来了希望。去细胞方法大致可以分为三类:化学处理法、物理处理法及酶学处理法,且已经应用于组织工程及再生医学的各个方面。本文总结并分类目前常用的去细胞方法及其在组织工程各方面的应用,对目前国内外常用的去细胞方法及其在组织工程及再生医学中的应用进行回顾总结与分析。  相似文献   

9.
去细胞基质在组织工程及再生医学的大量应用为解决组织器官的修复和重建等难题带来了希望。去细胞方法大致可以分为三类:化学处理法、物理处理法及酶学处理法,且已经应用于组织工程及再生医学的各个方面。本文总结并分类目前常用的去细胞方法及其在组织工程各方面的应用,对目前国内外常用的去细胞方法及其在组织工程及再生医学中的应用进行回顾总结与分析。  相似文献   

10.
Tissue engineering (TE) has been proven usefulness in cartilage defect repair. For effective cartilage repair, the structural orientation of the cartilage scaffold should mimic that of native articular cartilage, as this orientation is closely linked to cartilage mechanical functions. Using thermal-induced phase separation (TIPS) technology, we have fabricated an oriented cartilage extracellular matrix (ECM)-derived scaffold with a Young''s modulus value 3 times higher than that of a random scaffold. In this study, we test the effectiveness of bone mesenchymal stem cell (BMSC)-scaffold constructs (cell-oriented and random) in repairing full-thickness articular cartilage defects in rabbits. While histological and immunohistochemical analyses revealed efficient cartilage regeneration and cartilaginous matrix secretion at 6 and 12 weeks after transplantation in both groups, the biochemical properties (levels of DNA, GAG, and collagen) and biomechanical values in the oriented scaffold group were higher than that in random group at early time points after implantation. While these differences were not evident at 24 weeks, the biochemical and biomechanical properties of the regenerated cartilage in the oriented scaffold-BMSC construct group were similar to that of native cartilage. These results demonstrate that an oriented scaffold, in combination with differentiated BMSCs can successfully repair full-thickness articular cartilage defects in rabbits, and produce cartilage enhanced biomechanical properties.  相似文献   

11.
《Organogenesis》2013,9(4):101-102
Biomimicry (literally defined as the imitation of life or nature) has sparked a variety of human innovations and inspired countless cutting-edge designs. From spider silk-made artificial skin to lotus leaf-inspired self-cleaning materials, biomimicry endeavors to solve human problems. Biomimetic approaches have contributed significantly to advances biomedical research during recent years. Using polyacrylamide gels to mimic the elastic modulus of different biological tissues, Disher’s lab has directed meschymal stem cell differentiation into specific lineages.1 They have shown that soft substrates mimicking the elastic modulus of brain tissues (0.1~1 kPa) were neurogenic, substrates of intermediate elastic modulus mimicking muscle (8 ~17 kPa) were myogenic, and substrates with bone-like elastic modulus (25~40 kPa) were osteogenic. This work represents a novel way to regulate the fate of stem cells and exerts profound influence on stem cell research. Biomimcry also drives improvements in tissue engineering. Novel scaffolds have been designed to capture extracellular matrix-like structures, binding of ligands, sustained release of cytokines, and mechanical properties intrinsic to specific tissues for tissue engineering applications.2,3 For example, tissue engineering skin grafts have been designed to mimic the cell composition and layered structure of native skin.4 Similarly, in the field of regenerative medicine, researchers aim to create biomimetic scaffolds to mimic the properties of a native stem cell environment (niche) to dynamically interact with the entrapped stem cells and direct their response.5  相似文献   

12.
Anisotropy is one of the most meaningful determinants of biomechanical behaviour. This study employs micro-computed tomography (μCT) and image techniques for analysing the anisotropy of regenerative medicine polymer scaffolds. For this purpose, three three-dimensional anisotropy evaluation image methods were used: ellipsoid of inertia (EI), mean intercept length (MIL) and tensor scale (t-scale). These were applied to three patterns (a sphere, a cube and a right prism) and to two polymer scaffold topologies (cylindrical orthogonal pore mesh and spherical pores). For the patterns, the three methods provided good results. Regarding the scaffolds, EI mistook both topologies (0.0158, [ ? 0.5683; 0.6001]; mean difference and 95% confidence interval), and MIL showed no significant differences (0.3509, [0.0656; 0.6362]). T-scale is the preferable method because it gave the best capability (0.3441, [0.1779; 0.5102]) to differentiate both topologies. This methodology results in the development of non-destructive tools to engineer biomimetic scaffolds, incorporating anisotropy as a fundamental property to be mimicked from the original tissue and permitting its assessment by means of μCT image analysis.  相似文献   

13.
Recent years have seen a proliferation of methods leading to successful organ decellularization. In this experiment we examine the feasibility of a decellularized liver construct to support growth of functional multilineage cells. Bio-chamber systems were used to perfuse adult rat livers with 0.1% SDS for 24 hours yielding decellularized liver scaffolds. Initially, we recellularized liver scaffolds using a human tumor cell line (HepG2, introduced via the bile duct). Subsequent studies were performed using either human tumor cells co-cultured with human umbilical vein endothelial cells (HUVECs, introduced via the portal vein) or rat neonatal cell slurry (introduced via the bile duct). Bio-chambers were used to circulate oxygenated growth medium via the portal vein at 37C for 5-7 days. Human HepG2 cells grew readily on the scaffold (n = 20). HepG2 cells co-cultured with HUVECs demonstrated viable human endothelial lining with concurrent hepatocyte growth (n = 10). In the series of neonatal cell slurry infusion (n = 10), distinct foci of neonatal hepatocytes were observed to repopulate the parenchyma of the scaffold. The presence of cholangiocytes was verified by CK-7 positivity. Quantitative albumin measurement from the grafts showed increasing albumin levels after seven days of perfusion. Graft albumin production was higher than that observed in traditional cell culture. This data shows that rat liver scaffolds support human cell ingrowth. The scaffold likewise supported the engraftment and survival of neonatal rat liver cell slurry. Recellularization of liver scaffolds thus presents a promising model for functional liver engineering.  相似文献   

14.
Liver tissue engineering as a therapeutic option for restoring of damaged liver function has a special focus on using native decellularized liver matrix, but there are limitations such as the shortage of liver donor. Therefore, an appropriate alternative scaffold is needed to circumvent the donor shortage. This study was designed to evaluate hepatic differentiation of human induced pluripotent stem cells (hiPSCs) in decellularized Wharton's jelly (WJ) matrix as an alternative for native liver matrix. WJ matrices were treated with a series of detergents for decellularization. Then hiPSCs were seeded into decellularized WJ scaffold (DWJS) for hepatic differentiation by a defined induction protocol. The DNA quantitative assay and histological evaluation showed that cellular and nuclear materials were efficiently removed and the composition of extracellular matrix was maintained. In DWJS, hiPSCs-derived hepatocyte-like cells (hiPSCs-Heps) efficiently entered into the differentiation phase (G1) and gradually took a polygonal shape, a typical shape of hepatocytes. The expression of hepatic-associated genes (albumin, TAT, Cytokeratin19, and Cyp7A1), albumin and urea secretion in hiPSCs-Heps cultured into DWJS was significantly higher than those cultured in the culture plates (2D). Altogether, our results suggest that DWJS could provide a proper microenvironment that efficiently promotes hepatic differentiation of hiPSCs.  相似文献   

15.
Native myocardium has limited regenerative potential post injury. Advances in lineage reprogramming have provided promising cellular sources for regenerative medicine in addition to research applications. Recently we have shown that adult mouse fibroblasts can be reprogrammed to expandable, multipotent, induced cardiac progenitor cells (iCPCs) by employing forced expression of five cardiac factors along with activation of canonical Wnt and JAK/STAT signaling. Here we aim to further characterize iCPCs by highlighting their safety, ease of attainability, and functionality within a three-dimensional cardiac extracellular matrix scaffold. Specifically, iCPCs did not form teratomas in contrast to embryonic stem cells when injected into immunodeficient mice. iCPC reprogramming was achieved in wild type mouse fibroblasts without requiring a cardiac-specific reporter, solely utilizing morphological changes to identify, clonally isolate, and expand iCPCs, thus increasing the versatility of this technology. iCPCs also show the ability to repopulate decellularized native heart scaffolds and differentiated into organized structures containing cardiomyocytes, smooth muscle, and endothelial cells. Optical mapping of recellularized scaffolds shows field-stimulated calcium transients that propagate across islands of reconstituted tissue and bipolar local stimulation demonstrates cell-cell coupling within scaffolds. Overall, iCPCs provide a readily attainable, scalable, safe, and functional cell source for a variety of application including drug discovery, disease modeling, and regenerative therapy.  相似文献   

16.
Based on the remarkable demand for facial reconstitute or reshape fillers due to the dermal defects arising from specific diseases, trauma, or aging, several natural or synthetic materials have been investigated. Among the evaluated materials, decellularized dermis is one of the most biocompatible choices for the aim of skin tissue regenerative approaches. On the other hand, Carboxymethyl Cellulose (CMC), a synthetic polysaccharide, with the desirable degradability, biomechanical stability, and nontoxicity seems to be an acceptable reinforcement agent for decellularized dermis. Thus, in this research, an injectable soft tissue filler contained of human-derived decellularized collagen and CMC was fabricated. The cell-removal approving was performed utilizing H&E staining assay. The biocompatibility of the prepared samples was confirmed by MTT assay. The rheology examination demonstrated the increased storage modulus and enhanced elastic property as a consequence of CMC presence. Furthermore, the required flow force of the collagen/CMC filler was decreased as a consequence of decreasing the viscosity and its injectability was improved. According to the provided biomechanical and biological results, it could be claimed that the collagen/CMC hydrogel is a suitable substitute filler for skin tissue engineering.  相似文献   

17.
We have developed a method for the decellularization of whole rat livers by perfusion with increasing concentrations of detergents. This procedure resulted in an intact, decellularized organ with an intact liver capsule. These decellularized organs were analyzed by immunohistochemistry, and retained an appropriate distribution of extracellular matrix components. The laminin basement membranes of the liver vasculature also remain intact. These acellular vessel remnants were strong enough to be cannulated, providing a convenient means for the delivery of cells to areas deep within the decellularized organ. Cannulation of the extrahepatic vessel remnants allow for media to be circulated through the decellularized organ. These decellularized livers provide a natural matrix for research in the fields of bio-artificial livers and liver engineering.  相似文献   

18.
《Organogenesis》2013,9(2):134-136
We have developed a method for the decellularization of whole rat livers by perfusion with increasing concentrations of detergents. This procedure resulted in an intact, decellularized organ with an intact liver capsule. These decellularized organs were analyzed by immunohistochemistry, and retained an appropriate distribution of extracellular matrix components. The laminin basement membranes of the liver vasculature also remain intact. These acellular vessel remnants were strong enough to be cannulated; providing a convenient means for the delivery of cells to areas deep within the decellularized organ. Cannulation of the extrahepatic vessel remnants allow for media to be circulated through the decellularized organ. These decellularized livers provide a natural matrix for research in the fields of bio-artificial livers and liver engineering.  相似文献   

19.
To culture functional soft tissues and organs in three-dimensional scaffolds, it is essential to elucidate the optimal scaffold mechanical properties. However, mechanoregulated soft tissue remodeling is not well understood. In this study, we hypothesized that individual cells are capable of remodeling extracellular matrix within a short proximity of themselves in order to match the stiffness of the broader surrounding matrix. This theory was implemented in a three-dimensional finite element model to simulate soft tissue remodeling of human fibroblast cells in two collagen–chitosan scaffolds with different mechanical properties. Simulation results closely matched with previously reported experimental data, showing that soft tissue growth in compliant (Scaf-A, 4.30 kPa) and stiff (Scaf-B, 17.03 kPa) scaffolds led to an almost eightfold difference in the resulting stiffnesses after 10 days (8.40 kPa for Scaf-A, 59.25 kPa for Scaf-B). Furthermore, varying the simulated rate for tissue remodeling by \(\pm \)50 % caused unequal changes in the resulting stiffness (+3.6 and \(-\)23 % for Scaf-A, +5 and \(-\)17 % for Scaf-B), and \(\pm \)50 % changes in the assumed upper limit on tissue stiffness only had larger effects on the stiff scaffold (+42 and \(-\)44 % for Scaf-B). These results reinforce the notion that soft tissue remodeling is governed by the stiffness of the surrounding matrix, until meeting an upper limit on tissue stiffness.  相似文献   

20.
In the continuous search for better tissue engineering scaffolds it has become increasingly clear that the substrate properties dramatically affect cell responses. Here we compared cells from a physiologically stiff tissue, melanoma, to cells isolated from a physiologically soft tissue, brain. We measured the cell line responses to laminin immobilized onto glass or polyacrylamide hydrogels tuned to have a Young’s modulus ranging from 1 to 390?kPa. Single cells were analyzed for spreading area, shape, total actin content, actin-based morphological features and modification of immobilized laminin. Both cell types exhibited stiffness- and laminin concentration-dependent responses on polyacrylamide and glass. Melanoma cells exhibited very little spreading and were rounded on soft (1, 5, and 15?kPa) hydrogels while cells on stiff (40, 100, and 390?kPa) hydrogels were spread and had a polarized cell shape with large lamellipodia. On rigid glass surfaces, spreading and actin-based morphological features were not observed until laminin concentration was much higher. Similarly, increased microglia cell spreading and presence of actin-based structures were observed on stiff hydrogels. However, responses on rigid glass surfaces were much different. Microglia cells had large spreading areas and elongated shapes on glass compared to hydrogels even when immobilized laminin density was consistent on all gels. While cell spreading and shape varied with Young’s modulus of the hydrogel, the concentration of f-actin was constant. A decrease in laminin immunofluorescence was associated with melanoma and microglia cell spreading on glass with high coating concentration of laminin, indicating modification of immobilized laminin triggered by supraphysiologic stiffness and high ligand density. These results suggest that some cell lines are more sensitive to mechanical properties matching their native tissue environment while other cell lines may require stiffness and extracellular ligand density well above physiologic tissue before saturation in cell spreading, elongation and cytoskeletal re-organization are reached.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号