首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per) gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance. Because translational regulation ultimately implies changes in the kinetics of translation and, therefore, in the circadian clock dynamics, we sought to study how and to what extent the molecular clock dynamics is affected by the kinetics of PER translation. With this objective, we used a minimal mathematical model of the molecular circadian clock to qualitatively characterize the dynamical changes derived from kinetically different PER translational mechanisms. We found that the emergence of self-sustained oscillations with characteristic period, amplitude, and phase lag (time delays) between per mRNA and protein expression depends on the kinetic parameters related to PER translation. Interestingly, under certain conditions, a PER translation mechanism with saturable kinetics introduces longer time delays than a mechanism ruled by a first-order kinetics. In addition, the kinetic laws of PER translation significantly changed the sensitivity of our model to parameters related to the synthesis and degradation of per mRNA and PER degradation. Lastly, we found a set of parameters, with realistic values, for which our model reproduces some experimental results reported recently for Drosophila melanogaster and we present some predictions derived from our analysis.  相似文献   

5.
6.
Drosophila larvae and adult pacemaker neurons both express free‐running oscillations of period (PER) and timeless (TIM) proteins that constitute the core of the cell‐autonomous circadian molecular clock. Despite similarities between the adult and larval molecular oscillators, adults and larvae differ substantially in the complexity and organization of their pacemaker neural circuits, as well as in behavioral manifestations of circadian rhythmicity. We have shown previously that electrical silencing of adult Drosophila circadian pacemaker neurons through targeted expression of either an open rectifier or inward rectifier K+ channel stops the free‐running oscillations of the circadian molecular clock. This indicates that neuronal electrical activity in the pacemaker neurons is essential to the normal function of the adult intracellular clock. In the current study, we show that in constant darkness the free‐running larval pacemaker clock—like that of the adult pacemaker neurons they give rise to—requires membrane electrical activity to oscillate. In contrast to the free‐running clock, the molecular clock of electrically silenced larval pacemaker neurons continues to oscillate in diurnal (light–dark) conditions. This specific disruption of the free‐running clock caused by targeted K+ channel expression likely reflects a specific cell‐autonomous clock‐membrane feedback loop that is common to both larval and adult neurons, and is not due to blocking pacemaker synaptic outputs or disruption of pacemaker neuronal morphology. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

7.
Circadian rhythms in Drosophila rely on cyclic regulation of the period (per) and timeless (tim) clock genes. The molecular cycle requires rhythmic phosphorylation of PER and TIM proteins, which is mediated by several kinases and phosphatases such as Protein Phosphatase-2A (PP2A) and Protein Phosphatase-1 (PP1). Here, we used mass spectrometry to identify 35 “phospho-occupied” serine/threonine residues within PER, 24 of which are specifically regulated by PP1/PP2A. We found that cell culture assays were not good predictors of protein function in flies and so we generated per transgenes carrying phosphorylation site mutations and tested for rescue of the per01 arrhythmic phenotype. Surprisingly, most transgenes restore wild type rhythms despite carrying mutations in several phosphorylation sites. One particular transgene, in which T610 and S613 are mutated to alanine, restores daily rhythmicity, but dramatically lengthens the period to ∼30 hrs. Interestingly, the single S613A mutation extends the period by 2–3 hours, while the single T610A mutation has a minimal effect, suggesting these phospho-residues cooperate to control period length. Conservation of S613 from flies to humans suggests that it possesses a critical clock function, and mutational analysis of residues surrounding T610/S613 implicates the entire region in determining circadian period. Biochemical and immunohistochemical data indicate defects in overall phosphorylation and altered timely degradation of PER carrying the double or single S613A mutation(s). The PER-T610A/S613A mutant also alters CLK phosphorylation and CLK-mediated output. Lastly, we show that a mutation at a previously identified site, S596, is largely epistatic to S613A, suggesting that S613 negatively regulates phosphorylation at S596. Together these data establish functional significance for a new domain of PER, demonstrate that cooperativity between phosphorylation sites maintains PER function, and support a model in which specific phosphorylated regions regulate others to control circadian period.  相似文献   

8.
Regulated nuclear entry of clock proteins is a conserved feature of eukaryotic circadian clocks and serves to separate the phase of mRNA activation from mRNA repression in the molecular feedback loop. In Drosophila, nuclear entry of the clock proteins, PERIOD (PER) and TIMELESS (TIM), is tightly controlled, and impairments of this process produce profound behavioral phenotypes. We report here that nuclear entry of PER-TIM in clock cells, and consequently behavioral rhythms, require a specific member of a classic nuclear import pathway, Importin α1 (IMPα1). In addition to IMPα1, rhythmic behavior and nuclear expression of PER-TIM require a specific nuclear pore protein, Nup153, and Ran-GTPase. IMPα1 can also drive rapid and efficient nuclear expression of TIM and PER in cultured cells, although the effect on PER is mediated by TIM. Mapping of interaction domains between IMPα1 and TIM/PER suggests that TIM is the primary cargo for the importin machinery. This is supported by attenuated interaction of IMPα1 with TIM carrying a mutation previously shown to prevent nuclear entry of TIM and PER. TIM is detected at the nuclear envelope, and computational modeling suggests that it contains HEAT-ARM repeats typically found in karyopherins, consistent with its role as a co-transporter for PER. These findings suggest that although PER is the major timekeeper of the clock, TIM is the primary target of nuclear import mechanisms. Thus, the circadian clock uses specific components of the importin pathway with a novel twist in that TIM serves a karyopherin-like role for PER.  相似文献   

9.
The isolation of circadian clock mutants in Neurospora crassa and Drosophila melanogaster have identified numerous genes whose function is necessary for the normal operation of the circadian clock. In Neurospora many of these mutants map to a single locus called frq, whose properties suggest that its gene product is intimately involved in clock function. In Drosophila mutations at the per locus also suggest a significant role for the product of this gene in the insect clock mechanism. The per gene has been cloned and its gene product identified as a proteoglycan, most likely a membrane protein involved in affecting the ionic or electrical properties of cells in which it is located. Future progress in elucidating the mechanisms of circadian clocks are likely to come from continued analysis of clock mutants, both at the genetic and molecular levels.  相似文献   

10.
The circadian clocks govern many metabolic and behavioral processes in an organism. In insects, these clocks and their molecular machinery have been found to influence reproduction in many different ways. Reproductive behavior including courtship, copulation and egg deposition, is under strong influence of the daily rhythm. At the molecular level, the individual clock components also have their role in normal progress of oogenesis and spermatogenesis. In this study on the desert locust Schistocerca gregaria, three circadian clock genes were identified and their expression profiles were determined. High expression was predominantly found in reproductive tissues. Similar daily expression profiles were found for period (per) and timeless (tim), while the clock (clk) mRNA level is higher 12 h before the first per and tim peak. A knockdown of either per or tim resulted in a significant decrease in the progeny produced by dsRNA treated females confirming the role of clock genes in reproduction and providing evidence that both PER and TIM are needed in the ovaries for egg development. Since the knockdown of clk is lethal for the desert locust, its function remains yet to be elucidated.  相似文献   

11.
Drosophila cryptochrome (CRY) is a key circadian photoreceptor that interacts with the period and timeless proteins (PER and TIM) in a light-dependent manner. We show here that a heat pulse also mediates this interaction, and heat-induced phase shifts are severely reduced in the cryptochrome loss-of-function mutant cryb. The period mutant perL manifests a comparable CRY dependence and dramatically enhanced temperature sensitivity of biochemical interactions and behavioral phase shifting. Remarkably, CRY is also critical for most of the abnormal temperature compensation of perL flies, because a perL; cryb strain manifests nearly normal temperature compensation. Finally, light and temperature act together to affect rhythms in wild-type flies. The results indicate a role for CRY in circadian temperature as well as light regulation and suggest that these two features of the external 24-h cycle normally act together to dictate circadian phase.  相似文献   

12.
Drosophila cryptochrome (CRY) is a key circadian photoreceptor that interacts with the period and timeless proteins (PER and TIM) in a light-dependent manner. We show here that a heat pulse also mediates this interaction, and heat-induced phase shifts are severely reduced in the cryptochrome loss-of-function mutant cryb. The period mutant perL manifests a comparable CRY dependence and dramatically enhanced temperature sensitivity of biochemical interactions and behavioral phase shifting. Remarkably, CRY is also critical for most of the abnormal temperature compensation of perL flies, because a perL; cryb strain manifests nearly normal temperature compensation. Finally, light and temperature act together to affect rhythms in wild-type flies. The results indicate a role for CRY in circadian temperature as well as light regulation and suggest that these two features of the external 24-h cycle normally act together to dictate circadian phase.  相似文献   

13.
14.
15.
16.
Timeless与生物钟基因   总被引:3,自引:0,他引:3  
综述了timeless基因的发现、多态性和重要功能。timeless是最先被发现的两个生物钟基因之一。生物钟的昼夜节律由PER、TIM、CLOCK和CYCLE4个生物钟齿轮组成的正负反馈回路进行调节。其中TIM可以受光因子调控,它还可以与PER形成异二聚体,通过正负调控方式调节果蝇的昼夜节律行为。  相似文献   

17.
Circadian clock genes are ubiquitously expressed in the nervous system and peripheral tissues of complex animals. While clock genes in the brain are essential for behavioral rhythms, the physiological roles of these genes in the periphery are not well understood. Constitutive expression of the clock gene period was reported in the ovaries of Drosophila melanogaster; however, its molecular interactions and functional significance remained unknown. This study demonstrates that period (per) and timeless (tim) are involved in a novel noncircadian function in the ovary. PER and TIM are constantly expressed in the follicle cells enveloping young oocytes. Genetic evidence suggests that PER and TIM interact in these cells, yet they do not translocate to the nucleus. The levels of TIM and PER in the ovary are affected neither by light nor by the lack of clock-positive elements Clock (Clk) and cycle (cyc). Taken together, these data suggest that per and tim are regulated differently in follicle cells than in clock cells. Experimental evidence suggests that a novel fitness-related phenotype may be linked to noncircadian expression of clock genes in the ovaries. Mated females lacking either per or tim show nearly a 50% decline in progeny, and virgin females show a similar decline in the production of mature oocytes. Disruption of circadian mechanism by either the depletion of TIM via constant light treatment or continuous expression of PER via GAL4/UAS expression system has no adverse effect on the production of mature oocytes.  相似文献   

18.
19.
Artificial moonlight was recently shown to shift the endogenous clock of fruit flies and make them nocturnal. To test whether this nocturnal activity is partly due to masking effects of light, we exposed the clock‐mutants per01, tim01, per01;tim01, cyc01, and ClkJRK to light/dark and light/dim‐light cycles and determined the activity level during the day and night. We found that under moonlit nights, all clock mutants shifted their activity significantly into the night, suggesting that this effect is independent of the clock. We also recorded the flies under continuous artificial moonlight and darkness to judge the effect of dim constant light on the activity level. All mutants, except ClkJRK flies, were significantly more active under artificial moonlight conditions than under complete darkness. Unexpectedly, we found residual rhythmicity of per01 and especially tim01 mutants under these conditions, suggesting that TIM and especially PER retained some activity in the absence of its respective partner. Nevertheless, as even the double mutants and the cyc01 and ClkJRK mutants shifted their activity into the night, we conclude that dim light stimulates the activity of fruit flies in a clock‐independent manner. Thus, nocturnal light has a twofold influence on flies: it shifts the circadian clock, and it increases nocturnal activity independently of the clock. The latter was also observed in some primates by others and might therefore be of a more general validity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号