首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The efficient activation of p90rsk by MAP kinase requires their interaction through a docking site located at the C-terminal end of p90rsk. The MAP kinase p42mpk1 can associate with p90rsk in G2-arrested but not in mature Xenopus oocytes. In contrast, an N-terminally truncated p90rsk mutant named D2 constitutively interacts with p42mpk1. In this report we show that expression of D2 inhibits Xenopus oocyte maturation. The inhibition requires the p42mpk1 docking site. D2 expression uncouples the activation of p42mpk1 and p34cdc2/cyclin B in response to progesterone but does not prevent signaling through p90rsk. Instead, D2 interferes with a p42mpk1-triggered pathway, which regulates the phosphorylation and activation of Plx1, a potential activator of the Cdc25 phosphatase. This new pathway that links the activation of p42mpk1 and Plx1 during oocyte maturation is independent of p34cdc2/cyclin B activity but requires protein synthesis. Using D2, we also provide evidence that the sustained activation of p42mpk1 can trigger nuclear migration in oocytes. Our results indicate that D2 is a useful tool to study MAP kinase function(s) during oocyte maturation. Truncated substrates such as D2, which constitutively interact with MAP kinases, may also be helpful to study signal transduction by MAP kinases in other cellular processes.  相似文献   

2.
This paper reports on the activation of p90rsk during meiotic maturation and the inactivation of p90rsk after electrical parthenogenetic activation of rat oocytes. In addition, the correlation between p90rsk and MAP kinases after different treatments was studied. We assessed p90rsk activity by examining its electrophoretic mobility shift on SDS-PAGE and evaluated ERK1+2 activity by both mobility shift and a specific antibody against phospho-MAP kinase. The phosphorylation of p90rsk during rat oocyte maturation was a sequential process that may be divided into two stages: the first stage was partial phosphorylation, which was irrelevant with MAP kinases because p90rsk phosphorylation took place prior to activation of MAP kinases. The second stage inferred full activation occurred at the time when MAP kinases began to be activated (3 h after germinal visicle breakdown). Evidence for the involvement of MAP kinases in the p90rsk phosphorylation was further obtained by the following approaches: (1) okadaic acid (OA) accelerated the phosphorylation of both MAP kinases and p90rsk; (2) OA induced phosphorylation of both MAP kinases and p90rsk in the presence of IBMX; (3) when activation of MAP kinases was inhibited by cycloheximide, p90rsk phosphorylation was also abolished; (4) dephosphorylation of p90rsk began to take place at 3 h post-activation, temporally correlated with the completion of MAP kinase inactivation; (5) phosphorylation of both kinases was maintained in oocytes that failed to form pronuclei after stimulation; (6) OA abolished the dephosphorylation of both kinases after parthenogenetic activation. Our data suggest that MAP kinases are not required for early partial activation of p90rsk but are required for full activation of p90rsk during rat oocyte maturation, and that p90rsk dephosphorylation occurs following MAP kinase inactivation after parthenogenetic activation of rat oocytes.  相似文献   

3.
Exercise/contraction is a powerful stimulator of mitogen-activated protein (MAP) kinase cascades in skeletal muscle. Little is known regarding the physiological activation of enzymes downstream of MAP kinase. We investigated whether acute exercise results in activation of mitogen- and stress-activated kinases (MSK) 1 and 2, p90 ribosomal S6 kinase (p90rsk), and MAP kinase-activated protein kinase 2 (MAPKAPK2). Muscle biopsies were obtained from healthy volunteers before, during, and after 60 min one-leg cycle ergometry, from exercising and resting legs. MSK1 and MSK2 activities were increased 400-500% and 200-300%, respectively, in exercised muscle (P < 0.05 vs. rest). A dramatic increase in activity of p90rsk (MAPKAPK1) (>2,500%), and to a lesser extent MAPKAP2 (300%), was noted with exercise (P < 0.05 vs. rest). MSK1, MSK2, p90rsk, and MAPKAP2 activities were sustained throughout exercise. Exercise-induced activation of these enzymes was limited to working muscle, indicating that local rather than systemic factors activate these signaling cascades. Thus physical exercise leads to activation of multiple enzymes downstream of MAP kinase.  相似文献   

4.
We examined regulation of the Na(+)/H(+) exchanger isoform 1 by phosphorylation in the rat myocardium. We utilized cell extracts from adult rat hearts, adult rat extracts fractionated by fast performance liquid chromatography, and extracts from cultured neonatal cardiac myocytes. The carboxyl-terminal 178 amino acids of the Na(+)/H(+) exchanger were expressed in Escherichia coli fused with glutathione S-transferase. The purified protein was used as a substrate for in vitro phosphorylation and in-gel kinase assays. Unfractionated extracts from neonatal myocytes or adult hearts phosphorylated the COOH-terminal domain of the antiporter. Western blot analysis revealed that mitogen-activated protein (MAP) kinase (44 and 42 kDa) and p90(rsk) (90 kDa) were present in specific fractions of cardiac extracts that phosphorylated the COOH-terminal protein. In-gel kinase assays confirmed that protein kinases of approximately 44 and 90 kDa could phosphorylate this domain. MAP kinase and p90(rsk)-dependent phosphorylation of the antiporter could be demonstrated by immunoprecipitation of these kinases from extracts of neonatal cardiac myocytes. PD98059, a mitogen-activated protein kinase kinase inhibitor, decreased MAP kinase and p90(rsk) phosphorylation of the antiporter and abolished serum and endothelin 1-stimulated increases in steady-state pH(i). These results confirm the presence of MAP kinase-dependent phosphorylation in the regulation of the Na(+)/H(+) exchanger in the rat myocardium and suggest an important role for p90(rsk) phosphorylation in regulation of the protein by endothelin-mediated stimulation of the antiporter.  相似文献   

5.
Numerous studies have demonstrated that activation of the mitogen-activated protein (MAP) kinase is involved in the maturation of oocytes. In this study, the expression and phosphorylation of MAP kinase and p90rsk, one of the substrates of MAP kinase, during rabbit oocyte maturation were studied. The results showed that MAP kinase phosphorylation began to occur after germinal vesicle breakdown (GVBD) and the active form was maintained until metaphase II. p90rsk was also activated after GVBD following MAP kinase activation. Immunofluorescent analysis showed that p90rsk was enriched in the nuclear area after GVBD and was gradually localised to the spindle. When GVBD was inhibited by increased cAMP or decreased protein kinase C activity, the phosphorylation of both MAP kinase and p9rsk was blocked. Our data suggest that (1) MAP kinase/p90rsk activation is not necessary for GVBD, but plays an important role in the post-GVBD events including spindle assembly in rabbit oocytes; and (2) MAP kinase/p9rsk activation is down-regulated by cAMP and up-regulated byprotein kinase C in cumulus-enclosed rabbit oocytes.  相似文献   

6.
Mitogen-activated protein (MAP) kinases bind tightly to many of their physiologically relevant substrates. We have identified a new subfamily of murine serine/threonine kinases, whose members, MAP kinase-interacting kinase 1 (Mnk1) and Mnk2, bind tightly to the growth factor-regulated MAP kinases, Erk1 and Erk2. MNK1, but not Mnk2, also binds strongly to the stress-activated kinase, p38. MNK1 complexes more strongly with inactive than active Erk, implying that Mnk and Erk may dissociate after mitogen stimulation. Erk and p38 phosphorylate MNK1 and Mnk2, which stimulates their in vitro kinase activity toward a substrate, eukaryotic initiation factor-4E (eIF-4E). Initiation factor eIF-4E is a regulatory phosphoprotein whose phosphorylation is increased by insulin in an Erk-dependent manner. In vitro, MNK1 rapidly phosphorylates eIF-4E at the physiologically relevant site, Ser209. In cells, Mnk1 is post-translationally modified and enzymatically activated in response to treatment with either peptide growth factors, phorbol esters, anisomycin or UV. Mitogen- and stress-mediated MNK1 activation is blocked by inhibitors of MAP kinase kinase 1 (Mkk1) and p38, demonstrating that Mnk1 is downstream of multiple MAP kinases. MNK1 may define a convergence point between the growth factor-activated and one of the stress-activated protein kinase cascades and is a candidate to phosphorylate eIF-4E in cells.  相似文献   

7.
Members of the mitogen-activated protein (MAP) kinase family are implicated in mediating entry of cells into the cell cycle, as well as passage through meiotic M phase. These kinases have attracted much interest because their activation involves phosphorylation on both tyrosine and threonine residues, but little is known about their physiological targets. In this study, two distinct members of the MAP kinase family (p44mpk and p42mapk) are shown to phosphorylate chicken lamin B2 at a single site identified as Ser16. Moreover, these MAP kinases cause depolymerization of in-vitro-assembled longitudinal lamin head-to-tail polymers. Ser16 was previously shown to be phosphorylated during mitosis in vivo, and to be a target of the mitotic protein kinase p34cdc2 in vitro. Accordingly, lamins were proposed to be direct in vivo substrates of p34cdc2. This proposal is supported by quantitative analyses indicating that lamin B2, when assayed in vitro, is a substantially better substrate for p34cdc2 than for MAP kinases. Nevertheless, a physiological role of MAP kinases in lamin phosphorylation is not excluded. The observation that members of the MAP kinase family display sequence specificities overlapping that of p34cdc2 raises the possibility that some of the purported substrates of p34cdc2 may actually be physiological substrates of MAP kinases.  相似文献   

8.
9.
We have identified human ArhGAP9 as a novel MAP kinase docking protein that interacts with Erk2 and p38α through complementarily charged residues in the WW domain of ArhGAP9 and the CD domains of Erk2 and p38α. This interaction sequesters the MAP kinases in their inactive states through displacement of MAP kinase kinases targeting the same sites. While over-expression of wild type ArhGAP9 caused MAP kinase activation by the epidermal growth factor receptor (EGFR) to be suppressed and preserved the actin stress fibres in quiescent Swiss 3T3 fibroblasts, over-expression of an ArhGAP9 mutant defective in MAP kinase binding restored EGFR-induced MAP kinase activation and resulted in significant disruption of the stress fibres, consistent with the role of Erk activation in disassembly of actin stress fibres. The interaction between ArhGAP9 and the MAP kinases represents a novel mechanism of cross-talk between Rho GTPase and MAP kinase signaling.  相似文献   

10.
A synthetic peptide modeled after the major threonine (T669) phosphorylation site of the epidermal growth factor (EGF) receptor was an efficient substrate (apparent Km approximately 0.45 mM) for phosphorylation by purified p44mpk, a MAP kinase from sea star oocytes. The peptide was also phosphorylated by a related human MAP kinase, which was identified by immunological criteria as p42mapk. Within 5 min of treatment of human cervical carcinoma A431 cells with EGF or phorbol myristate acetate (PMA), a greater than 3-fold activation of p42mapk was measured. However, Mono Q chromatography of A431 cells extracts afforded the resolution of at least three additional T669 peptide kinases, some of which may be new members of the MAP kinase family. One of these (peak I), which weakly adsorbed to Mono Q, phosphorylated myelin basic protein (MBP) and other MAP kinase substrates, immunoreacted as a 42 kDa protein on Western blots with four different MAP kinase antibodies, and behaved as a approximately 45 kDa protein upon Superose 6 gel filtration. Another T669 peptide kinase (peak IV), which bound more tightly to Mono Q than p42mapk (peak II), exhibited a nearly identical substrate specificity profile to that of p42mapk, but it immunoreacted as a 40 kDa protein only with anti-p44mpk antibody on Western blots, and eluted from Superose 6 in a high molecular mass complex of greater than 400 kDa. By immunological criteria, the T669 peptide kinase in Mono Q peak III was tentatively identified as an active form of p34cdc2 associated with cyclin A. The Mono Q peaks III and IV kinases were modestly stimulated following either EGF or PMA treatments of A431 cells, and they exhibited a greater T669 peptide/MBP ratio than p42mapk. These findings indicated that multiple proline-directed kinases may mediate phosphorylation of the EGF receptor.  相似文献   

11.
A Palmer  A C Gavin    A R Nebreda 《The EMBO journal》1998,17(17):5037-5047
M-phase entry in eukaryotic cells is driven by activation of MPF, a regulatory factor composed of cyclin B and the protein kinase p34(cdc2). In G2-arrested Xenopus oocytes, there is a stock of p34(cdc2)/cyclin B complexes (pre-MPF) which is maintained in an inactive state by p34(cdc2) phosphorylation on Thr14 and Tyr15. This suggests an important role for the p34(cdc2) inhibitory kinase(s) such as Wee1 and Myt1 in regulating the G2-->M transition during oocyte maturation. MAP kinase (MAPK) activation is required for M-phase entry in Xenopus oocytes, but its precise contribution to the activation of pre-MPF is unknown. Here we show that the C-terminal regulatory domain of Myt1 specifically binds to p90(rsk), a protein kinase that can be phosphorylated and activated by MAPK. p90(rsk) in turn phosphorylates the C-terminus of Myt1 and down-regulates its inhibitory activity on p34(cdc2)/cyclin B in vitro. Consistent with these results, Myt1 becomes phosphorylated during oocyte maturation, and activation of the MAPK-p90(rsk) cascade can trigger some Myt1 phosphorylation prior to pre-MPF activation. We found that Myt1 preferentially associates with hyperphosphorylated p90(rsk), and complexes can be detected in immunoprecipitates from mature oocytes. Our results suggest that during oocyte maturation MAPK activates p90(rsk) and that p90(rsk) in turn down-regulates Myt1, leading to the activation of p34(cdc2)/cyclin B.  相似文献   

12.
Tong C  Fan HY  Chen DY  Song XF  Schatten H  Sun QY 《Cell research》2003,13(5):375-383
In this study we used U0126, a potent and specific inhibitor of MEK, to study the roles of MEK/ERK/p90rsk signaling pathway in the meiotic cell cycle of mouse oocytes. The phosphorylation of MAP kinase and p90rsk in the oocytes treated with 1.5 microM U0126 was the same as that in oocytes cultured in drug-free medium. With 1.5 microM U0126 treatment, the spindles appeared normal as they formed in oocytes, but failed to maintain its structure. Instead, the spindle lost one pole or elongated extraordinarily. After further culture, some oocytes extruded gigantic polar bodies (>30 microm) that later divided into two small ones. Some oocytes underwent symmetric division and produced two equal-size daughter cells in which normal spindles formed. In oocytes with different division patterns, MAP kinase was normally phosphorylated. When the concentration of U0126 was increased to 15 mM, the phosphorylation of both MAPK and p90rsk were inhibited, while symmetric division was decreased. When incubating in medium containing 15 microM U0126 for 14 h, oocytes were activated, but part of them failed to emit polar bodies. MII oocytes were also activated by 15 microM U0126, at the same time the dephosphorylation of MAP kinase and p90rsk was observed. Our results indicate that 1) MEK plays important but not indispensable roles in microtubule organization; 2) MEK keeps normal meiotic spindle morphology, targets peripheral spindle positioning and regulates asymmetric division by activating some unknown substrates other than MAP kinase /p90rsk; and 3) activation of MEK/ERK/p90rsk cascade maintains MII arrest in mouse oocytes.  相似文献   

13.
Protein interactions between MAP kinases and substrates, activators, and scaffolding proteins are regulated by docking site motifs, one containing basic residues proximal to Leu-X-Leu (DEJL) and a second containing Phe-X-Phe (DEF). Hydrogen exchange mass spectrometry was used to identify regions in MAP kinases protected from solvent by docking motif interactions. Protection by DEJL peptide binding was observed in loops spanning beta7-beta8 and alphaD-alphaE in p38alpha and ERK2. In contrast, protection by DEF binding to ERK2 revealed a distinct hydrophobic pocket for Phe-X-Phe binding formed between the P+1 site, alphaF helix, and the MAP kinase insert. In inactive ERK2, this pocket is occluded by intramolecular interactions with residues in the activation lip. In vitro assays confirm the dependence of Elk1 and nucleoporin binding on ERK2 phosphorylation, and provide a structural basis for preferential involvement of active ERK in substrate binding and nuclear pore protein interactions.  相似文献   

14.
A novel protein kinase, which was only active when phosphorylated by the mitogen-activated protein kinase (MAP kinase), has been purified 85,000-fold to homogeneity from rabbit skeletal muscle. This MAP kinase activated protein kinase, termed MAPKAP kinase-2, was distinguished from S6 kinase-II (MAPKAP kinase-1) by its response to inhibitors, lack of phosphorylation of S6 peptides and amino acid sequence. MAPKAP kinase-2 phosphorylated glycogen synthase at Ser7 and the equivalent serine (*) in the peptide KKPLNRTLS*VASLPGLamide whose sequence is similar to the N terminus of glycogen synthase. MAPKAP kinase-2 was resolved into two monomeric species of apparent molecular mass 60 and 53 kDa that had similar specific activities and substrate specificities. Peptide sequences of the 60 and 53 kDa species were identical, indicating that they are either closely related isoforms or derived from the same gene. MAP kinase activated the 60 and 53 kDa forms of MAPKAP kinase-2 by phosphorylating the first threonine residue in the sequence VPQTPLHTSR. Furthermore, Mono Q chromatography of extracts from rat phaeochromocytoma and skeletal muscle demonstrated that two MAP kinase isoforms (p42mapk and p44mapk) were the only enzymes in these cells that were capable of reactivating MAPKAP kinase-2. These results indicate that MAP kinase activates at least two distinct protein kinases, suggesting that it represents a point at which the growth factor-stimulated protein kinase cascade bifurcates.  相似文献   

15.
16.
MAP kinases bind activating kinases, phosphatases, and substrates through docking interactions. Here, we report a 1.9 A crystallographic analysis of inactive ERK2 bound to a "D motif" docking peptide (pepHePTP) derived from hematopoietic tyrosine phosphatase, a negative regulator of ERK2. In this complex, the complete D motif interaction defined by mutagenic analysis is observed, including extensive electrostatic interactions with the "CD" site of the kinase. Large conformational changes occur in the activation loop where the dual phosphorylation sites, which are buried in the inactive form of ERK2, become exposed to solvent in the complex. Similar conformational changes occur in a complex between ERK2 and a MEK2 (MAP/ERK kinase-2)-derived D motif peptide (pepMEK2). D motif peptides are known to bind homologous loci in the MAP kinases p38alpha and JNK1, also inducing conformational changes in these enzymes. However, the binding interactions and conformational changes are unique to each, thus contributing to specificity among MAP kinases.  相似文献   

17.
In RAW 264.7 macrophages lipopolysaccharide (LPS) stimulated the activation of p42 and p44 MAP kinases and their upstream activator mitogen-activated protein (MAP) kinase kinase (MAPKK), and induced the 69-kDa isoform of cyclo-oxygenase-2 (COX-2) and the 130-kDa isoform of nitric oxide synthase (iNOS). PD 098059, a specific inhibitor of the activation of MAPKK, prevented LPS-mediated activation of MAPKK (IC50 = 3.0 +/- 0.1 microM, n = 3) and p42/44 MAP kinases and substantially reduced the induction of COX-2 by approximately 40%-70%, but was without effect upon the induction of iNOS. In parallel, LPS also stimulated the activation of p38 MAP kinase and the MAPKAP kinase-2, a downstream target of p38 MAP kinase. SB 203580, a specific inhibitor of p38 MAP kinase prevented the activation of p38 MAP kinase (IC50 = 3.3 +/- 1.4 microM, n = 3) and MAPKAP kinase-2 by LPS and reduced the induction of COX-2 by approximately 50-90%, with no significant effect upon iNOS expression. These studies indicate the involvement of both the classical p42/44 MAP kinases and p38 MAP kinase in the regulation of COX-2 but not iNOS induction following exposure to LPS.  相似文献   

18.
The activation of MAPKAP kinase 2 was investigated under heat-shock conditions in mouse Ehrlich ascites tumor cells and after treatment of human MO7 cells with tumor necrosis factor-α (TNF-α). MAPKAP kinase 2 activity was determined using the small heat-shock proteins (sHsps) Hsp25 and Hsp27 as substrates. In both cell types, about a threefold increase in MAPKAP kinase 2 activity could be detected in a time interval of about 10–15 min after stimulation either by heat shock or TNF-α. Phosphorylation of MAPKAP kinase 2, but not the level of MAPKAP kinase 2 mRNA, was increased after heat shock in EAT cells. It is further shown that activation of MAPKAP kinase 2 in MO7 cells is accompanied by increased MAP kinase activity. These data strongly suggest that increased phosphorylation of the sHsps after heat shock or TNF-α treatment results from phosphorylation by MAPKAP kinase 2, which itself is activated by phosphorylation through MAP kinases. Hence, we demonstrate that MAPKAP kinase 2 is responsible not only for phosphorylation of sHsps in vitro but also in vivo. The findings link sHsp phosphorylation to the MAP kinase cascade, explaining the early phosphorylation of sHsp that is stimulated by a variety of inducers such as mitogens, phorbol esters, thrombin, calcium ionophores, and heat shock.  相似文献   

19.
Effect of several vanadium salts, sodium orthovanadate, vanadyl sulfate and sodium metavanadate on protein tyrosine phosphorylation and serine/threonine kinases in chinese hamster ovary (CHO) cells overexpressing a normal human insulin receptor was examined. All the compounds stimulated protein tyrosine phosphorylation of two major proteins with molecular masses of 42 kDa (p42) and 44 kDa (p44). The phosphorylation of p42 and p44 was associated with an activation of mitogen activated protein (MAP) kinase as well as increased protein tyrosine phosphorylation of p42mapk and p44mapk. Vanadinm salts also activated the 90 kDa ribosomal s6 kinase (p90rsk) and 70 kDa ribosomal s6 kinase (p70s6k). Among the three vanadium salts tested, vanadyl sulfate appeared to be slightly more potent than others in stimulating MAP kinases and p70s6k activity. It is suggested that vanadium-induced activation of MAP kinases and ribosomal s6 kinases may be one of the mechanisms by which insulin like effects of this trace element are mediated.Abbreviations eIF-4 eukaryotic protein synthesis initiation factor-4 - GRB-2 growth factor receptor bound protein-2 - GSK-3 Glycogen Synthase Kinase-3 - IRS-1 insulin receptor substrate-1 - ISPK insulin stimulated protein kinase - MAPK mitogen activated protein kinase, also known as - ERK extracellular signal regulated kinase - MAPKK mitogen activated protein kinase kinase, also known as-MEK, MAPK or ERK kinase - PHAS-1 phosphorylated heat and acid stable protein regulated by insulin - PI3K phosphatidyl inositol 3-kinase - PP1-G protein phosphatase-glycogen bound form - PTK protein tyrosine kinase - PTPase protein tyrosine phosphatase - rsk ribosomal s6 kinases - shc src homology domain containing protein - SOS son of sevenless  相似文献   

20.
Evidence for two catalytically active kinase domains in pp90rsk.   总被引:12,自引:2,他引:10       下载免费PDF全文
Mitogen-activated protein kinase and one of its targets, pp90rsk (ribosomal S6 kinase [RSK]), represent two serine/threonine kinases in the Ras-activated signalling cascade that are capable of directly regulating gene expression. pp90rsk has been shown to have two highly conserved and distinct catalytic domains. However, whether both domains are active and which domain is responsible for its various identified phosphotransferase activities have not been determined. Here we demonstrate that the N-terminal domain is responsible for its phosphotransferase activity towards a variety of substrates which contain an RXXS motif at the site of in vitro phosphorylation, including serum response factor, c-Fos, Nur77, and the 40S ribosomal protein S6. We also provide evidence that the C-terminal domain is catalytically active and can be further activated by mitogen-activated protein kinase phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号