首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dipeptidylpeptidase IV (DPP-IV) is a well-documented drug target for the treatment of type 2 diabetes. Hepatocyte nuclear factors (HNF)-1alpha and HNF-1beta, known as the causal genes of MODY3 and MODY5, respectively, have been reported to be involved in regulation of DPP-IV gene expression. But, it is not completely clear (i) that they play roles in regulation of DPP-IV gene expression, and (ii) whether DPP-IV gene activity is changed by mutant HNF-1alpha and mutant HNF-1beta in MODY3 and MODY5. To explore these questions, we investigated transactivation effects of wild HNF-1alpha and 13 mutant HNF-1alpha, as well as wild HNF-1beta and 2 mutant HNF-1beta, on DPP-IV promoter luciferase gene in Caco-2 cells by means of a transient experiment. Both wild HNF-1alpha and wild HNF-1beta significantly transactivated DPP-IV promoter, but mutant HNF-1alpha and mutant HNF-1beta exhibited low transactivation activity. Moreover, to study whether mutant HNF-1alpha and mutant HNF-1beta change endogenous DPP-IV enzyme activity, we produced four stable cell lines from Caco-2 cells, in which wild HNF-1alpha or wild HNF-1beta, or else respective dominant-negative mutant HNF-1alphaT539fsdelC or dominant-negative mutant HNF-1betaR177X, was stably expressed. We found that DPP-IV gene expression and enzyme activity were significantly increased in wild HNF-1alpha cells and wild HNF-1beta cells, whereas they decreased in HNF-1alphaT539fsdelC cells and HNF-1betaR177X cells, compared with DPP-IV gene expression and enzyme activity in Caco-2 cells. These results suggest that both wild HNF-1alpha and wild HNF-1beta have a stimulatory effect on DPP-IV gene expression, but that mutant HNF-1alpha and mutant HNF-1beta attenuate the stimulatory effect.  相似文献   

3.
4.
5.
The purpose of this study is to clarify that the amino acid residues (Asp62 and Arg193) are responsible for the activity and stability of arginine kinase (AK). The amino acid residues Asp62 (D62) and Arg193 (R193) are strictly conserved in monomeric AKs and form an ion pair in the transition state analogue complex. In this research, we replaced D62 with glutamate (E) or glycine (G) and R193 with lysine (K) or glycine (G). The mutants of D62E and R193K retained almost 90% of the wild-type activity, whereas D62G and R193G had a pronounced loss in activity. A detailed comparison was made between the physic-chemical properties and conformational changes of wild-type AK and the mutants by means of ultraviolet (UV) difference and fluorescence spectra. The results indicated that the conformation of all of the mutants had been changed and the stability in a urea solution was also reduced. We speculated that the hydrogen bond and electrostatic interactions formed between residues 62 and 193 play a key role in stabilizing the structure and mediating the synergism in substrate binding of arginine kinase from greasyback shrimp (Metapenaeus ensis).  相似文献   

6.
7.
8.
9.
In order to study the role of Phe169 in p38alpha MAP kinase structure and function, wild-type p38alpha and five p38alpha DFG motif mutants were examined in vitro for phosphorylation by MKK6, kinase activity toward ATF2 substrate, thermal stability, and X-ray crystal structure. All six p38alpha variants were efficiently phosphorylated by MKK6. However, only one activated p38alpha mutant (F169Y) possessed measurable kinase activity (1% compared to wild-type). The loss of kinase activity among the DFG mutants may result from an inability to correctly position Asp168 in the activated form of p38alpha. Two mutations significantly increased the thermal stability of p38alpha (F169A DeltaTm = 1.3 degrees C and D168G DeltaTm = 3.8 degrees C), and two mutations significantly decreased the stability of p38alpha (F169R DeltaTm = -3.2 degrees C and F169G DeltaTm = -4.7 degrees C). Interestingly, X-ray crystal structures of two thermally destabilized p38alpha-F169R and p38alpha-F169G mutants revealed a DFG-OUT conformation in the absence of an inhibitor molecule. This DFG-OUT conformation, termed alpha-DFG-OUT, is different from the ones previously identified in p38alpha crystal structures with bound inhibitors and postulated from high-temperature molecular dynamics simulations. Taken together, these results indicate that Phe169 is optimized for p38alpha functional activity and structural dynamics, rather than for structural stability. The alpha-DFG-OUT conformation observed for p38alpha-F169R and p38alpha-F169G may represent a naturally occurring intermediate state of p38alpha that provides access for binding of allosteric inhibitors. A model of the local forces driving the DFG IN-OUT transition in p38alpha is proposed.  相似文献   

10.
11.
The B-domain of protein A is a small three-helix bundle that has been the subject of considerable experimental and theoretical investigation. Nevertheless, a unified view of the structure of the transition-state ensemble (TSE) is still lacking. To characterize the TSE of this surprisingly challenging protein, we apply a combination of psi analysis (which probes the role of specific side-chain to side-chain contacts) and kinetic H/D amide isotope effects (which measures hydrogen-bond content), building upon previous studies using mutational phi analysis (which probes the energetic influence of side-chain substitutions). The second helix is folded in the TSE, while helix formation appears just at the carboxy and amino termini of the first and third helices, respectively. The experimental data suggest a homogenous yet plastic TS with a native-like topology. This study generalizes our earlier conclusion, based on two larger alpha/beta proteins, that the TSEs of most small proteins achieve approximately 70% of their native state's relative contact order. This high percentage limits the degree of possible TS heterogeneity and requires a reevaluation of the structural content of the TSE of other proteins, especially when they are characterized as small or polarized.  相似文献   

12.
Computational protein design (CPD) predictions are highly dependent on the structure of the input template used. However, it is unclear how small differences in template geometry translate to large differences in stability prediction accuracy. Herein, we explored how structural changes to the input template affect the outcome of stability predictions by CPD. To do this, we prepared alternate templates by Rotamer Optimization followed by energy Minimization (ROM) and used them to recapitulate the stability of 84 protein G domain β1 mutant sequences. In the ROM process, side-chain rotamers for wild-type (WT) or mutant sequences are optimized on crystal or nuclear magnetic resonance (NMR) structures prior to template minimization, resulting in alternate structures termed ROM templates. We show that use of ROM templates prepared from sequences known to be stable results predominantly in improved prediction accuracy compared to using the minimized crystal or NMR structures. Conversely, ROM templates prepared from sequences that are less stable than the WT reduce prediction accuracy by increasing the number of false positives. These observed changes in prediction outcomes are attributed to differences in side-chain contacts made by rotamers in ROM templates. Finally, we show that ROM templates prepared from sequences that are unfolded or that adopt a nonnative fold result in the selective enrichment of sequences that are also unfolded or that adopt a nonnative fold, respectively. Our results demonstrate the existence of a rotamer bias caused by the input template that can be harnessed to skew predictions toward sequences displaying desired characteristics.  相似文献   

13.
14.
Nakagawa SH  Zhao M  Hua QX  Hu SQ  Wan ZL  Jia W  Weiss MA 《Biochemistry》2005,44(13):4984-4999
How insulin binds to its receptor is unknown despite decades of investigation. Here, we employ chiral mutagenesis-comparison of corresponding d and l amino acid substitutions in the hormone-to define a structural switch between folding-competent and active conformations. Our strategy is motivated by the T --> R transition, an allosteric feature of zinc-hexamer assembly in which an invariant glycine in the B chain changes conformations. In the classical T state, Gly(B8) lies within a beta-turn and exhibits a positive phi angle (like a d amino acid); in the alternative R state, Gly(B8) is part of an alpha-helix and exhibits a negative phi angle (like an l amino acid). Respective B chain libraries containing mixtures of d or l substitutions at B8 exhibit a stereospecific perturbation of insulin chain combination: l amino acids impede native disulfide pairing, whereas diverse d substitutions are well-tolerated. Strikingly, d substitutions at B8 enhance both synthetic yield and thermodynamic stability but markedly impair biological activity. The NMR structure of such an inactive analogue (as an engineered T-like monomer) is essentially identical to that of native insulin. By contrast, l analogues exhibit impaired folding and stability. Although synthetic yields are very low, such analogues can be highly active. Despite the profound differences between the foldabilities of d and l analogues, crystallization trials suggest that on protein assembly substitutions of either class can be accommodated within classical T or R states. Comparison between such diastereomeric analogues thus implies that the T state represents an inactive but folding-competent conformation. We propose that within folding intermediates the sign of the B8 phi angle exerts kinetic control in a rugged landscape to distinguish between trajectories associated with productive disulfide pairing (positive T-like values) or off-pathway events (negative R-like values). We further propose that the crystallographic T -->R transition in part recapitulates how the conformation of an insulin monomer changes on receptor binding. At the very least the ostensibly unrelated processes of disulfide pairing, allosteric assembly, and receptor binding appear to utilize the same residue as a structural switch; an "ambidextrous" glycine unhindered by the chiral restrictions of the Ramachandran plane. We speculate that this switch operates to protect insulin-and the beta-cell-from protein misfolding.  相似文献   

15.
16.
Wilbanks AM  Laporte SA  Bohn LM  Barak LS  Caron MG 《Biochemistry》2002,41(40):11981-11989
The DRY motif is a triplet amino acid sequence (aspartic acid, arginine, and tyrosine) that is highly conserved in G protein-coupled receptors (GPCRs). Recently, we have shown that a molecular determinant for nephrogenic diabetes insipidus, the vasopressin receptor with a substitution at the DRY motif arginine (V2R R137H), is a constitutively desensitized receptor that is unable to couple to G proteins due to its constitutive association with beta-arrestin [Barak, L. S. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 93-98]. Additionally, the mutant receptors are localized in endocytic vesicles, identical to wild-type receptors stimulated with agonist. In this study, we asked whether the constitutively desensitized phenotype observed in the V2R R137H represents a general paradigm that may be extended to other GPCRs. We show that arginine substitutions in the DRY motifs of the alpha(1B) adrenergic receptor (alpha(1B)-AR) and angiotensin II type 1A receptor (AT(1A)R) result in receptors that are uncoupled from G proteins, associated with beta-arrestins, and found localized in endocytic vesicles rather than at the plasma membrane in the absence of agonists. The localization of the alpha(1B)-ARs and AT(1A)Rs with arginine substitutions can be restored to the plasma membrane by either using selective antagonists or preventing the endocytosis of the beta-arrestin-receptor complexes. These results indicate that the arginine residue of the DRY motif is essential for preserving the localization of the inactive receptor complex. Furthermore, constitutive desensitization may underlie some loss-of-function receptor phenotypes and represent an unappreciated mechanism of hormonal resistance.  相似文献   

17.
A total of 19 835 polar residues from a data set of 250 non-homologous and highly resolved protein crystal structures were used to identify side-chain main-chain (SC-MC) hydrogen bonds. The ratio of the number of SC-MC hydrogen bonds to the total number of polar residues is close to 1:2, indicating the ubiquitous nature of such hydrogen bonds. Close to 56% of the SC-MC hydrogen bonds are local involving side-chain acceptor/donor ('i') and a main-chain donor/acceptor within the window i-5 to i+5. These short-range hydrogen bonds form well defined conformational motifs characterized by specific combinations of backbone and side-chain torsion angles. (a) The Ser/Thr residues show the greatest preference in forming intra-helical hydrogen bonds between the atoms O(gamma)(i) and O(i-4). More than half the examples of such hydrogen bonds are found at the middle of alpha-helices rather than at their ends. The most favoured motif of these examples is alpha(R)alpha(R)alpha(R)alpha(R)(g(-)). (b) These residues also show great preference to form hydrogen bonds between O(gamma)(i) and O(i-3), which are closely related to the previous type and though intra-helical, these hydrogen bonds are more often found at the C-termini of helices than at the middle. The motif represented by alpha(R)alpha(R)alpha(R)alpha(R)(g(+)) is most preferred in these cases. (c) The Ser, Thr and Glu are the most frequently found residues participating in intra-residue hydrogen bonds (between the side-chain and main-chain of the same residue) which are characterized by specific motifs of the form beta(g(+)) for Ser/Thr residues and alpha(R)(g(-)g(+)t) for Glu/Gln. (d) The side-chain acceptor atoms of Asn/Asp and Ser/Thr residues show high preference to form hydrogen bonds with acceptors two residues ahead in the chain, which are characterized by the motifs beta (tt')alphaR and beta(t)alpha(R), respectively. These hydrogen bonded segments, referred to as Asx turns, are known to provide stability to type I and type I' beta-turns. (e) Ser/Thr residues often form a combination of SC-MC hydrogen bonds, with the side-chain donor hydrogen bonded to the carbonyl oxygen of its own peptide backbone and the side-chain acceptor hydrogen bonded to an amide hydrogen three residues ahead in the sequence. Such motifs are quite often seen at the beginning of alpha-helices, which are characterized by the beta(g(+))alpha(R)alpha(R) motif. A remarkable majority of all these hydrogen bonds are buried from the protein surface, away from the surrounding solvent. This strongly indicates the possibility of side-chains playing the role of the backbone, in the protein interiors, to satisfy the potential hydrogen bonding sites and maintaining the network of hydrogen bonds which is crucial to the structure of the protein.  相似文献   

18.
The alpha-aminoisobutyric (Aib) residue has generally been considered to be a strongly helicogenic residue as evidenced by its ability to promote helical folding in synthetic and natural sequences. Crystal structures of several peptide natural products, peptaibols, have revealed predominantly helical conformations, despite the presence of multiple helix-breaking Pro or Hyp residues. Survey of synthetic Aib-containing peptides shows a preponderance of 3(10)-, alpha-, and mixed 3(10)/alpha-helical structures. This review highlights the examples of Aib residues observed in nonhelical conformations, which fall 'primarily' into the polyproline II (P(II)) and fully extended regions of conformational space. The achiral Aib residue can adopt both left (alpha(L))- and right (alpha(R))-handed helical conformations. In sequences containing chiral amino acids, helix termination can occur by means of chiral reversal at an Aib residue, resulting in formation of a Schellman motif. Examples of Aib residues in unusual conformations are illustrated by surveying a database of Aib-containing crystal structures.  相似文献   

19.
20.
Structurally characterizing partially folded states is problematic given the nature of these transient species. A peptide 20mer, T38AQLIATLKNGRKISLDLQA57 (P20), which has been shown to partially fold in a relatively stable turn/loop conformation (LKNGR) and transient beta-sheet structure, is a good model for studying backbone and side-chain mobilities in a transiently folded peptide by using 13C-NMR relaxation. Here, four residues in P20, A43, T44, G48, and 151, chosen for their positions in or near the loop conformation and for compositional variety, have been selectively 13C-enriched. Proton-coupled and decoupled 13C-NMR relaxation experiments have been performed to obtain the temperature dependencies (278 K to 343 K) of auto- and cross-correlation motional order parameters and correlation times. In order to differentiate sequence-neighbor effects from folding effects, two shorter peptides derived from P20, IATLK (P5) and NGRKIS (P6), were similarly 13C-enriched and investigated. For A43, T44, G48, and 151 residues in P20 relative to those in P5/P6, several observations are consistent with partial folding in P20: (1) C alpha H motional tendencies are all about the same, vary less with temperature, and are relatively more restricted, (2) G48 C alpha H2 phi (t) psi (t) rotations are more correlated, and (3) methyl group rotations are slower and yield lower activation energies consistent with formation of hydrophobic "pockets." In addition, T44 and 151 C beta H mobilities in P20 are more restricted at lower temperature than those of their C alpha H and display significantly greater sensitivity to temperature suggesting a larger enthalpic contribution to side-chain mobility. Moreover, at higher temperatures, side-chain methyls and methylenes in P20 are more motionally restricted than those in P5/P6, suggesting that some type of "folded" or "collapsed" structure remains in P20 for what normally would be considered an "unfolded" state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号