首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The Vibrio proteolyticus aminopeptidase is synthesized as a preproprotein and then converted into an active enzyme by cleavage of the N-terminal propeptide. In recombinant Escherichia coli, however, the aminopeptidase is not processed correctly and the less-active form that has the N-terminal propeptide accumulates in the culture medium. Recently, we isolated a novel vibriolysin that was expressed as an active form in E. coli by random mutagenesis; this enzyme shows potential as a candidate enzyme for the processing of aminopeptidase. The E. coli cells were engineered to co-express the novel vibriolysin along with aminopeptidase. Co-expression of vibriolysin resulted in an approximately 13-fold increase in aminopeptidase activity, and a further increase was observed in the form lacking its C-terminal propeptide. The active aminopeptidase was purified from the culture supernatant including the recombinant vibriolysin by heat treatment and ion exchange and hydroxyapatite chromatography with high purity and 35% recovery rate. This purified aminopeptidase effectively converted methionyl-human growth hormone (Met-hGH) to hGH. Thus, this co-expression system provides an efficient method for producing active recombinant V. proteolyticus aminopeptidase.  相似文献   

2.
Limited secretion capacity remains a drawback of using Escherichia coli as the host for the production of recombinant proteins. In this report, random mutagenesis was performed within the N-terminal propeptide of thermostable WF146 protease, a subtilase from thermophilic Bacillus sp. WF146, generating a variant named WBMMT with improved capacity for extracellular production when expressed in E. coli. Two mutations, L(-57)Q and E(-10)D, were identified within the N-terminal propeptide. The amount of WBMMT in the culture medium was found to be about three times higher than that of wild type. Besides, the introduction of mutations L(-57)Q/E(-10)D into the N-terminal propeptide also accelerated the maturation of the enzyme. Biochemical analysis indicated that the thermostability and the catalytic activity of mature WBMMT were similar to those of wild type. Far-UV CD spectra analysis and limited proteolysis experiments suggested that the mutations L(-57)Q/E(-10)D resulted in a structural change in the N-terminal propeptide of the proform, and the N-terminal propeptide became more flexible, which might be beneficial for the proform to keep in a translocation-competent state. Our result indicates that N-terminal propeptide engineering may be a valuable approach for improving extracellular production of recombinant subtilases expressed in E. coli.  相似文献   

3.
The alyPEEC gene encoding alginate lyase from marine bacterium Pseudoalteromonas elyakovii IAM 14594 was subcloned into pBAD24 with arabinose promoter and sequenced, and overexpressed in TOP10 strain of E. coli after arabinose induction. Expression levels of alyPEEC gene in E. coli cells were over 39.6-fold higher than those in P. elyakovii IAM 14594 cells. The molecular mass of purified alginate lyase from the engineered E. coli cells was estimated to be 32.0 kDa. Optimum pH and temperature of the alginate lyase activity were 7.0 and 30 °C, respectively. The enzyme was unstable on heating and in acidic and alkaline solution. The enzyme activity was stimulated by the MgCl2, NaCl, KCl, CaCl2, BaCl2 and MnCl2, but was inhibited by the addition of 1.0 mM of EGTA, EDTA, SDS, ZnSO4, AgNO3, and CoCl2. All the alginate, polyM and polyG could be converted into oligosaccharides with more than tetrasaccharides by the purified recombinant alginate lyase, suggesting that the recombinant alginate lyase produced by the engineered E. coli has highly potential application in seaweed genetics, food and pharmaceutical industries.  相似文献   

4.
Pro-aminopeptidase processing protease (PA protease) is a thermolysin-like metalloprotease produced by Aeromonas caviae T-64. The N-terminal propeptide acts as an intramolecular chaperone to assist the folding of PA protease and shows inhibitory activity toward its cognate mature enzyme. Moreover, the N-terminal propeptide strongly inhibits the autoprocessing of the C-terminal propeptide by forming a complex with the folded intermediate pro-PA protease containing the C-terminal propeptide (MC). In order to investigate the structural determinants within the N-terminal propeptide that play a role in the folding, processing, and enzyme inhibition of PA protease, we constructed a chimeric pro-PA protease by replacing the N-terminal propeptide with that of vibriolysin, a homologue of PA protease. Our results indicated that, although the N-terminal propeptide of vibriolysin shares only 36% identity with that of PA protease, it assists the refolding of MC, inhibits the folded MC to process its C-terminal propeptide, and shows a stronger inhibitory activity toward the mature PA protease than that of PA protease. These results suggest that the N-terminal propeptide domains in these thermolysin-like proteases may have similar functions, in spite of their primary sequence diversity. In addition, the conserved regions in the N-terminal propeptides of PA protease and vibriolysin may be essential for the functions of the N-terminal propeptide.  相似文献   

5.
The acpI gene encoding an alkaline protease (AcpI) from a deep-sea bacterium, Alkalimonas collagenimarina AC40T, was shotgun-cloned and sequenced. It had a 1,617-bp open reading frame encoding a protein of 538 amino acids. Based on analysis of the deduced amino acid sequence, AcpI is a subtilisin-like serine protease belonging to subtilase family A. It consists of a prepropeptide, a catalytic domain, and a prepeptidase C-terminal domain like other serine proteases from the genera Pseudomonas, Shewanella, Alteromonas, and Xanthomonas. Heterologous expression of the acpI gene in Escherichia coli cells yielded a 28-kDa recombinant AcpI (rAcpI), suggesting that both the prepropeptide and prepeptidase C-terminal domains were cleaved off to give the mature form. Analysis of N-terminal and C-terminal amino acid sequences of purified rAcpI showed that the mature enzyme would be composed of 273 amino acids. The optimal pH and temperature for the caseinolytic activity of the purified rAcpI were 9.0–9.5 and 45°C in 100 mM glycine–NaOH buffer. Calcium ions slightly enhanced the enzyme activity and stability. The enzyme favorably hydrolyzed gelatin, collagen, and casein. AcpI from A. collagenimarina AC40T was also purified from culture broth, and its molecular mass was around 28 kDa, indicating that the cleavage manner of the enzyme is similar to that in E. coli cells.  相似文献   

6.
A novel extracellular serine protease derived from Thermoanaerobacter tengcongensis, designated tengconlysin, was successfully overexpressed in Escherichia coli as a soluble protein by recombination of an N-terminal Pel B leader sequence instead of the original presequence and C-terminal 6× histidine tags. The purified protein was activated by 0.1% sodium dodecyl sulfate (SDS) treatment but not by thermal treatment. The molecular weight of tengconlysin estimated by SDS-polyacrylamide gel electrophoresis analysis and gel filtration chromatography was 37.9 and 36.2 kDa, respectively, suggesting that the enzyme is monomeric. The N-terminal sequence of mature tengconlysin was LDTAT, suggesting that it is a preproprotein containing a 29 amino acid presequence (predicted from the SigP program) and a 117 amino acid prosequence in the N-terminus. The C-terminal putative propeptide (position 469–540 in the preproprotein) did not inhibit the protease activity. The optimum temperature for tengconlysin activity was 90°C in the presence of 1 mM calcium ions and the optimum pH ranged from 6.5 to 7.0. Activity inhibition studies suggest that the protease is a serine protease. The protease was stable in 0.1% SDS and 1–4 M urea at 70°C in the presence of calcium ions and was activated by the denaturing agents.  相似文献   

7.
A novel microbial transglutaminase (TGase) from the cultural filtrate of Streptomyces netropsis BCRC 12429 (Sn) was purified. The specific activity of the purified TGase was 18.2 U/mg protein with an estimated molecular mass of 38 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. The TGase gene of S. netropsis was cloned and an open reading frame of 1,242 bp encoding a protein of 413 amino acids was identified. The Sn TGase was synthesized as a precursor protein with a preproregion of 82 amino acid residues. The deduced amino acid sequence of the mature S. netropsis TGase shares 78.9–89.6% identities with TGases from Streptomyces spp. A high level of soluble Sn TGase with its N-terminal propeptide fused with thioredoxin was expressed in E. coli. A simple and efficient process was applied to convert the purified recombinant protein into an active enzyme and showed activity equivalent to the authentic mature TGase. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
The full length empA gene encoding Vibrio anguillarum metalloprotease was amplified by PCR and fused to the expression vector pBAD24. The carboxy-terminal 6xHis-tagged recombinant metalloprotein (rEmpA) was expressed from plasmid pBAD-VAP6his in E. coli TOP10 and purified with affinity chromatography using a Ni-NTA column. SDS-PAGE analysis and Western blotting revealed a molecular mass of the mature rEmpA predicted to be 36 kDa. The optimal temperature and pH for the purified rEmpA were 37°C and 8.0, respectively. The enzyme was stable below 30°C and between pH 5.0 and 8.0, respectively. The results show that Ca2+, Na+ and Mg2+ had an activating effect on the enzyme while Zn2+ and Cu2+ acted as inhibitors of the enzyme. The purified rEmpA was characterized as a zinc metalloprotease as it was inhibited by zinc- and metal-specific inhibitors, such as 1,10-phenanthroline, EDTA and EGTA. The results indicate that some characteristics of EmpA from marine V. anguillarum had been modified after expression and processing in the engineered E. coli. The purified rEmpA showed degradation activity towards various kinds of proteins, indicating its potential role in pathogenesis.  相似文献   

9.
He MX  Feng H  Zhang YZ 《Biotechnology letters》2008,30(12):2111-2117
A novel bacterial cell-surface display system was developed in Escherichia coli using omp1, a hypothetical outer membrane protein of Zymomonas mobilis. By using this system, we successfully expressed β-amylase gene of sweet potato in E. coli. The display of enzyme on the membrane surface was also confirmed. The recombinant β-amylase showed to significantly increase hydrolytic activity toward soluble starch. Our results provide a basis for constructing an engineered Z. mobilis strain directly fermenting raw starch to produce ethanol.  相似文献   

10.

Background  

Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli (Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells.  相似文献   

11.
12.
The over-expressed extracellular sucrase (SacC) of Zymomonas mobilisfrom a recombinant Escherichia coli (pZSP62) carrying the sacC gene was purified partially by repeated cycles of freezing and thawing. This method separated the highly expressed recombinant protein from the bulk of endogenous E. coli proteins. The enzyme was further purified 14 fold with a 55% yield from the cellular extract of E. coli by hydroxyapatite chromatography. The purified enzyme had a Mr of 46 kDa by SDS-PAGE. Its km value for sucrose was 86 mM and was optimal at pH 5.0 and at 36°C.  相似文献   

13.
A genomic clone encoding mature karasurin-A (KRNA), a ribosome-inactivating protein from Trichosanthes kirilowii var. japonica, was efficiently expressed in E. coli using an expression cassette vector pMAL-c2. The resultant recombinant KRNA fused with maltose-binding protein (MBP) was recovered from the soluble fraction of the bacterial cells and purified to near homogeneity after one round of the affinity chromatography. Neither the karasurin precursor retaining both N- and C-terminal peptides, nor the protein with the N-terminal peptide was successufully produced even as a MBP-fusion. The protein with its C-terminal peptide was over-produced but was recovered in an insoluble fraction. Both the recombinant MBP-KRNA fusion protein and recombinant KRNA with MBP removed were as active as the native KRNA from root tubers. The immunogenicity of the recombinant KRNA was also unaffected by fusion with MBP.  相似文献   

14.
鲑鱼生长激素基因分泌型表达质粒的构建   总被引:1,自引:0,他引:1  
生长激素(GH)是动物垂体前叶分泌的一种多肽类激素.应用分子重组及PCR等技术,构建了一种鲑鱼生长激素基因分泌型表达质粒pOsGH153,使编码鲑鱼生长激素成熟肽的序列克隆在大肠杆菌分泌型表达载体PIN-Ⅲ-ompA内,直接位于编码大肠杆菌外膜蛋白A信号肽序列的下游,在Lpp-Lac杂合启动子控制下,经IPTG诱导,分子量约23 000的鲑鱼生长激素在大肠杆菌中获得高效表达,该产物具有天然鲑鱼生长激素的免疫活性,直接分泌到细胞周质,而信号肽被自动剪除.  相似文献   

15.
Matrix metalloproteinases (MMPs) are reported to be involved in tumor growth, apoptosis, angiogenesis, invasion, and development of metastases. These are zinc containing metalloproteases, known for their role in extracellular matrix degradation. MMP-11 (stromelysin3) is reported to be highly expressed in breast cancer, therefore it may act as marker enzyme for breast cancer progression. The present work was carried out to produce recombinant canine (Canis lupus familiaris) MMP-11 lacking the signal and propeptide in E. coli by optimizing its expression and purification in biologically active form and to functionally characterize it. A bacterial protein expression vector pPROEX HTc was used. The MMP-11 mature peptide encoding gene was successfully cloned and expressed in E. coli and the purified recombinant enzyme was found to be functionally active. The recombinant enzyme exhibited caseinolytic activity and could be activated by Trypsin and 4-Amino phenyl mercuric acetate (APMA). However Ethylene diamine tertra acetate (EDTA) inhibited the enzyme's caseinolytic activity. The recombinant enzyme degraded extracellular matrix constituents and facilitated migration of MDCK (Madin-Darby canine kidney) cells through BD Biocoat Matrigel invasion chambers. These results suggest that in vivo MMP-11 could play a significant role in the turnover of extracellular matrix constituents.  相似文献   

16.
Vimelysin is a unique metalloproteinase from Vibrio sp. T1800 exhibiting high activity at low temperature and high stability in organic solvents such as ethanol. A 1,821 bp open reading frame of the vimelysin gene encoded 607 amino acid residues consisting of an N-terminal pro-region, a mature enzyme, and a C-terminal pro-region. The mature enzyme region showed 80%, 57% and 35% sequence identity with the mature forms of vibriolysin from V. vulnificus, pseudolysin from Pseudomonas aeruginosa, and thermolysin from Bacillus thermoproteolyticus, respectively. The catalytic residues and zinc-binding motifs of metalloproteinases are well conserved in vimelysin. The vimelysin gene was expressed in E. coli JM109 cells and the recombinant enzyme was purified as a 38-kDa mature form from cell-free extracts. The purified recombinant enzyme is indistinguishable from the enzyme purified directly from Vibrio. To obtain mutants exhibiting higher stability in organic solvents, random mutations were introduced by error-prone PCR and 600 transformants were screened. The N123D mutant exhibits two times higher stability in organic solvents than the wild-type enzyme. A plausible mechanism for the stability of the N123D mutant in organic solvents was discussed based on homology models of vimelysin and the N123D mutant.  相似文献   

17.
The soluble periplasmic subunit of the formate dehydrogenase FdhA of the tetrachloroethene-reducing anaerobe Sulfurospirillum multivorans was purified to apparent homogeneity and the gene (fdhA) was identified and sequenced. The purified enzyme catalyzed the oxidation of formate with oxidized methyl viologen as electron acceptor at a specific activity of 1683 nkat/mg protein. The apparent molecular mass of the native enzyme was determined by gel filtration to be about 100 kDa, which was confirmed by the fdhA nucleotide sequence. fdhA encodes for a pre-protein that differs from the truncated mature protein by an N-terminal 35-amino-acid signal peptide containing a twin arginine motif. The amino acid sequence of FdhA revealed high sequence similarities to the larger subunits of the formate dehydrogenases of Campylobacter jejuni, Wolinella succinogenes, Escherichia coli (FdhN, FdhH, FdhO), and Methanobacterium formicicum. According to the nucleotide sequence, FdhA harbors one Fe4/S4 cluster and a selenocysteine residue as well as conserved amino acids thought to be involved in the binding of a molybdopterin guanidine dinucleotide cofactor.Abbreviations Fdh Formate dehydrogenase - PCE Tetrachloroethene  相似文献   

18.
Yang Q  Xu J  Li M  Lei X  An L 《Biotechnology letters》2003,25(8):607-610
The mature gene of gloshedobin, a snake venom thrombin-like enzyme from the snake, Gloydius shedaoensis, was cloned and expressed in strain E. coli BL21(DE3). Having been induced by IPTG, the recombinant gloshedobin was in both soluble and insoluble forms. To avoid inclusion body formation, expression was optimized at 25 °C. Furthermore, a 50% increase in solubilization of the target protein was obtained by adding 0.1 mM Mg2+ to the medium. The purified recombinant gloshedobin gave a 44 kDa band on SDS-PAGE gel.  相似文献   

19.
The gene encoding an endo-β-1,4-xylanase from an Indonesian indigenous Bacillus licheniformis strain I5 was amplified using PCR, cloned, and expressed in Escherichia coli. The nucleotide sequence of a 642 bp DNA fragment was determined, revealing one open reading frame that encoded a xylanase. Based on the nucleotide sequence, calculated molecular mass of the enzyme was 23 kDa. This xylanase has a predicted typical putative signal peptide; however, in E. coli, the active protein was located mainly in intracellular form. Neither culture supernatant of recombinant E. coli nor periplasmic fraction has significantly detectable xylanase activity. The deduced amino acid of the gene has 91% identity with that of Bacillus subtilis endoxylanase. Optimal activity of the recombinant enzyme was at pH 7 and 50°C  相似文献   

20.
PCR technique is used to amplify the mature peptide gene of human transforming growth factor pl (hTGFβ1); the gene is verified by full-length sequence analysis. In DHSa/pBV220 expression system, hTGFβ1 attains expression in the cytoplasm ofE. coli up to 16%. The recombinant protein is proved to be the monomer of hTGFPl by N-terminal amino acids analysis and immunoblotting. After refolding of the monomer proteinin vitm in glutathione system or CHPAS/DMSO system, the dimeric protein accumulates to 30% in the refolding mixture. The recombinant protein is purified to homogeneity on silver staining, and is shown to have strong biological activity from MTT bioassay on MvlLu cells. Project supported by the National Natural Science Foundation of China (Grant No. 39580015)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号