首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Bertamini  M.  Nedunchezhian  N. 《Photosynthetica》2003,41(4):611-617
Photoinhibition of photosynthesis was investigated in grapevine (Vitis vinifera L.) exposed to 2 or 4h of high irradiance (HI) (1 700–1 800 mol m–2 s–1) leaves under field conditions at different sampling time in a day. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm) and photosynthetic electron transport measurements. When the photochemical efficiency of photosystem 2 (PS2), Fv/Fm, markedly declined, F0 increased in both 2 (HI2) and 4 h (HI4) HI leaves sampled at midday. When various photosynthetic activities were followed on isolated thylakoids, HI4 leaves showed significantly higher inhibition of whole chain and PS2 activity than the HI2 leaves sampled at midday. Later, the leaves reached maximum PS2 efficiencies similar to those observed early in the morning during sampling at evening. The artificial exogenous electron donor Mn2+ failed to restore PS2 activity in both variants of leaves, while DPC and NH2OH significantly restored PS2 activity in HI4 midday leaf samples. Quantification of the PS2 reaction centre protein D1 and 33 kDa protein of water splitting complex following midday exposure of leaves showed pronounced differences between HI2 and HI4 leaves. The marked loss of PS2 activity noticed in midday samples was mainly due to the marked loss of D1 protein in HI2, while in HI4 it was mainly 33-kDa protein.  相似文献   

2.
Photoinhibition under irradiance of 2 000 μmol m−2 s−1 (HI) was studied in detached control (C) and water deficit (WD) leaves of grapevine (Vitis vinifera L.) plants. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and electron transport measurements. The potential efficiency of photosystem (PS) 2, Fv/Fm, marginally declined under HI in WD-leaves without significant increase of F0. In contrast, Fv/Fm ratio declined markedly with significant increase of F0 in C-leaves. In isolated thylakoids, the rate of whole chain and PS2 activity under HI were more decreased in C-than WD-leaves. The artificial exogenous electron donors diphenyl carbazide, NH2OH, and Mn2+ failed to restore the HI-induced loss of PS2 activity in both C-and WD-leaves. Thus HI operates at the acceptor side of PS2 in both leaf types. Quantification of the PS2 reaction centre protein D1 following HI exposure of leaves showed pronounced differences between C-and WD-leaves. The marked loss of PS2 activity under HI of C-leaves was due to the marked loss of D1 protein of the PS2 reaction centre.  相似文献   

3.
The degree of photoinhibition of sun and shade grown leaves of grapevine was determined by means of the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and electron transport measurements. The potential efficiency of photosystem 2 (PS2), Fv/Fm, markedly declined under high irradiance (HI) in shade leaves with less than 10 % of F0 level. In contrast, Fv/Fm ratio declined with about 20 % increase of F0 level in sun leaves. In isolated thylakoids, the rate of whole chain and PS2 activity in HI shade and sun leaves was decreased by about 60 and 40 %, respectively. A smaller inhibition of photosystem 1 (PS1) activity was also observed in both leaf types. In the subsequent dark incubation, fast recovery was observed in both leaf types that reached maximum PS2 efficiencies similar to non-photoinhibited control leaves. The artificial exogenous electron donors DPC, NH2OH, and Mn2+ failed to restore the HI-induced loss of PS2 activity in sun leaves, while DPC and NH2OH were significantly restored in shade leaves. Hence HI in shade leaves inactivates on the donor side of PS2 whereas it does at the acceptor side in sun leaves, respectively. Quantification of the PS2 reaction centre protein D1 and the 33 kDa protein of water splitting complex following HI-treatment of leaves showed pronounced differences between shade and sun leaves. The marked loss of PS2 activity in HI leaves was due to the marked loss of D1 protein of the PS2 reaction centre protein and the 33 kDa protein of the water splitting complex in sun and shade leaves, respectively.  相似文献   

4.
Bertamini  M.  Nedunchezhian  N. 《Photosynthetica》2002,40(4):597-603
Photoinhibition of photosynthesis was investigated in Vitis berlandieri and Vitis rupestris leaves under field conditions at different sampling time in a day. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm) and photosynthetic electron transport measurements. When the photochemical efficiency of PS2, Fv/Fm, markedly declined, F0 increased significantly in leaves of V. berlandieri, while F0 did not increase in V. rupestris leaves. Isolated thylakoids of leaves of V. berlandieri showed significant inhibition of whole chain and PS2 activities at midday. A smaller inhibition was observed for V. rupestris. Later, the leaves reached maximum PS2 efficiencies similar to those observed early in the morning during sampling at evening. The artificial exogenous electron donor Mn2+ failed to restore PS2 activity in both species, while DPC and NH2OH significantly restored PS2 activity in V. rupestris midday leaf samples. Quantification of the PS2 reaction centre protein D1 and 33 kDa protein of water splitting complex following midday exposure of leaves showed pronounced differences between V. berlandieri and V. rupestris leaves. The marked loss of PS2 activity noticed in midday samples was mainly due to the marked loss of D1 protein in V. berlandieri while in V. rupestris it was the 33 kDa protein.  相似文献   

5.
In grapevine (Vitis vinifera L.) leaf chlorophyll (Chl) a and Chl b and carotenoid contents were higher in plants grown at low photon flux densities (PFD) than in those grown at medium and high PFD. The highest Chl a variable to maximum fluorescence ratio Fv/Fm was observed in plants grown at medium PFD while the minimum fluorescence F0 was highest in those at high PFD. In isolated thylakoids, both high and low PFD caused marked inhibition of whole chain and photosystem 2 (PS2) activities. The artificial exogenous electron donor diphenyl carbazide significantly restored the loss of PS2 activity in low PFD leaves.  相似文献   

6.
In six dominant species of the Amazonian ‘Bana’ vegetation, leaf blade characteristics, pigment composition, and chlorophyll (Chl) fluorescence parameters were measured in young and mature leaves under field conditions. Leaf δ13C was comparable in the six species, which suggested that both expanding and expanded leaves contained organic matter fixed under similar intercellular and ambient CO2 concentration (C i/C a). High leaf C/N and negative δ15N values found in this habitat were consistent with the extreme soil N-deficiency. Analysis of Chl and carotenoids showed that expanding leaves had an incomplete development of photosynthetic antenna when compared to adult leaves. Dynamic inactivation of photosystem 2 (PS2) at midday was observed at both leaf ages as Fv/Fm decreased compared to predawn values. Adult leaves reached overnight Fv/Fm ratios typical of healthy leaves. Overnight recovery of Fv/Fm in expanding leaves was incomplete. F0 remained unchanged from midday to predawn and Fv tended to increase from midday to predawn. The recovery from midday depression observed in adult leaves suggested an acclimatory down-regulation associated with photo-protection and non-damage of PS2.  相似文献   

7.
Bertamini  M.  Nedunchezhian  N. 《Photosynthetica》2001,39(4):529-537
In canopy shade leaves of grapevine (Vitis vinifera L. cv. Moscato giallo) grown in the field the contents of chlorophyll (Chl), carotenoids (Car), and soluble protein per fresh mass were lower than in sun leaves. RuBPC activity, in vivo nitrate reductase activity (indicator of nitrate utilisation), apparent electron transport rate, and photochemical fluorescence quenching were also significantly reduced in canopy shade leaves. When various photosynthetic activities were followed in isolated thylakoids, canopy shade leaves exerted a marked inhibition of whole chain and photosystem (PS) 2 activity. Smaller inhibition of PS1 activity was observed even in high-level canopy shade (HS) leaves. The artificial exogenous electron donors, DPC and NH2OH, significantly restored the loss of PS2 activity in HS leaves. Similar results were obtained when Fv/Fm was evaluated by Chl fluorescence measurements. The marked loss of PS2 activity in canopy shade leaves was due to the loss of 47, 43, 33, 28–25, 23, 17, and 10 kDa polypeptides.  相似文献   

8.
Bertamini  M.  Nedunchezhian  N.  Borghi  B. 《Photosynthetica》2001,39(1):59-65
The effect of iron deficiency on photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase (RuBPC), and photosystem activities were investigated in field grown grapevine (Vitis vinifera L. cv. Pinot noir) leaves. The contents of chlorophyll (Chl) (a+b) and carotenoids per unit fresh mass showed a progressive decrease upon increase in iron deficiency. Similar results were also observed in content of total soluble proteins and RuBPC activity. The marked loss of large (55 kDa) and small (15 kDa) subunits of RuBPC was also observed in severely chlorotic leaves. However, when various photosynthetic electron transport activities were analysed in isolated thylakoids, a major decrease in the rate of whole chain (H2O methyl viologen) electron transport was observed in iron deficient leaves. Such reduction was mainly due to the loss of photosystem 2 (PS2) activity. The same results were obtained when Fv/Fm was evaluated by Chl fluorescence measurements in leaves. Smaller inhibition of photosystem 1 (PS1) activity was also observed in both mild and severely chlorotic leaves. The artificial electron donors, diphenyl carbazide and NH2OH, markedly restored the loss of PS2 activity in severely chlorotic leaves. The marked loss of PS2 activity was evidently due to the loss of 33, 23, 28-25, and 17 kDa polypeptides in iron deficient leaves.  相似文献   

9.
Seeds of Suaeda salsa were cultured in dark for 3 d and betacyanin accumulation in seedlings was promoted significantly. Then the seedlings with accumulated betacyanin (C+B) were transferred to 14/10 h light/dark and used for chilling treatment 15 d later. Photosystem 2 (PS2) photochemistry, D1 protein content, and xanthophyll cycle during the chilling-induced photoinhibition (exposed to 5 °C at a moderate photon flux density of 500 μmol m−2 s−1 for 3 h) and the subsequent restoration were compared between the C+B seedlings and the control (C) ones. The maximal efficiency of PS2 photochemistry (Fv/Fm), the efficiency of excitation energy capture by open PS2 centres (Fv′/Fm′), and the yield of PS2 electron transport (ΦPS2) of the C+B and C leaves both decreased during photoinhibition. However, smaller decreases in Fv/Fm, Fv′/Fm′, and ΦPS2 were observed in the C+B leaves than in C ones. At the same time, the deepoxidation state of xanthophyll cycle, indicated by (A+Z)/(V+A+Z) ratio, increased rapidly but the D1 protein content decreased considerably during the photoinhibition. The increase in rate of (A+Z)/(V+A+Z) was higher but the D1 protein turnover was slower in C+B than C leaves. After photoinhibition treatment, the plants were transferred to a dim irradiation (10 μmol m−2 s−1) at 25 °C for restoration. During restoration, the chlorophyll (Chl) fluorescence parameters, D1 protein content, and xanthophyll cycle components relaxed gradually, but the rate and level of restoration in the C+B leaves was greater than those in the C leaves. The addition of betacyanins to the thylakoid solution in vitro resulted in similar changes of Fv/Fm, D1 protein content, and (A+Z)/(V+A+Z) ratio during the chilling process. Therefore, betacyanin accumulation in S. salsa seedlings may result in higher resistance to photoinhibition, larger slowing down of D1 protein turnover, and enhancement of non-radiative energy dissipation associated with xanthophyll cycle, as well as in greater restoration after photoinhibition than in the control when subjected to chilling at moderate irradiance.  相似文献   

10.
In tobacco leaves inoculated with tobacco mosaic virus (TMV), changes in chlorophyll (Chl) and carotenoid contents, parameters of slow Chl fluorescence kinetics, i.e. the maximum quantum yield of photosystem (PS2) photochemistry Fv/Fm, the effective quantum yield of photochemical energy conversion in PS2 Φ2, ratio of quantum yields of photochemical and concurrent non-photochemical processes in PS2 Fv/F0, non-photochemical quenching (NPQ), and photochemical activities of isolated chloroplasts from systemically infected tobacco leaves were investigated. We compared two successive stages of infection, the first in the stage of vein clearing at 9th day post inoculation (dpi) and the second at 22nd dpi when two different regions, i.e. light- (LGI) or dark-green (DGI) islands in the infected leaf were apparent and symptoms were fully developed. These two different regions were measured separately. The Chl and carotenoid contents in infected leaves decreased with a progression of infection and were lowest in LGI in the second stage. Also the ratio of Chl a/b declined in similar manner. The maximum quantum yield of PS2 photochemistry Fv/Fm, was decreased in the following order: first stage, DGI, and LGI. The same is true for the ratio Fv/F0. The decrease of Φ2 in infected leaves declined as compared to their controls. On the contrary, NPQ increased in infected leaves, the highest value was found in the first infection stage. Photochemical activities of the whole electron transport chain in isolated chloroplasts dramatically declined with the progression of symptoms, the lowest value was in LGI. Similarly, but to a lesser extent, the activity of PS2 in isolated chloroplasts decreased in infected leaves. Generally, the most marked impairment of the photosynthetic apparatus was manifested in the LGI of infected leaves.  相似文献   

11.
Bertamini  M.  Muthuchelian  K.  Grando  M.S.  Nedunchezhian  N. 《Photosynthetica》2002,40(1):157-160
The contents of chlorophyll (Chl), leaf biomass, and soluble proteins were markedly decreased in phytoplasma infected apple leaves. Similar results were also observed for ribulose-1,5-bisphosphate carboxylase, 14CO2 fixation, and nitrate reductase activity. In contrast, the contents of sugars, starch, amino acids, and total saccharides were significantly increased in phytoplasma infected leaves. In isolated chloroplasts, phytoplasma infection caused marked inhibition of whole photosynthetic electron chain and photosystem 2 (PS2) activity. The artificial exogenous electron donor, diphenyl carbazide, significantly restored the loss of PS2 activity in infected leaves. Similar results were obtained when Fv/Fm was evaluated by in vivo Chl a fluorescence kinetic measurements.  相似文献   

12.
Nedunchezhian  N.  Muthuchelian  K.  Bertamini  M. 《Photosynthetica》2000,38(4):607-614
Changes in various components of photosynthetic apparatus during the 6-d dark incubation at 25 °C of detached control and DCMU-treated Triticum aestivum L. leaves were examined. The rate of photosystem 2 (PS2) activity was decreased with increase of the time of dark incubation in control leaves. In contrast to this, DCMU-treated leaves demonstrated high stability by slowing down the inactivation processes. Diphenyl carbazide and NH2OH restored the PS2 activity more in control leaves than in DCMU-treated leaves. Mn2+ failed to restore the PS2 activity in both control and DCMU-treated samples. Similar results were obtained when Fv/Fm was evaluated by chlorophyll fluorescence measurements. The marked loss of PS2 activity in dark incubated control leaves was primarily due to the loss of D1, 33, and 23 kDa extrinsic polypeptides and 28-25 kDa LHCP2 polypeptides.  相似文献   

13.
Photosynthetic rates of green leaves (GL) and green flower petals (GFP) of the CAM plant Dendrobium cv. Burana Jade and their sensitivities to different growth irradiances were studied in shade-grown plants over a period of 4 weeks. Maximal photosynthetic O2 evolution rates and CAM acidities [dawn/dusk fluctuations in titratable acidity] were higher in leaves exposed to intermediate sunlight [a maximal photosynthetic photon flux density (PPFD) of 500–600 μmol m−2 s−1] than in leaves grown under full sunlight (a maximal PPFD of 1 000–1 200 μmol m−2 s−1) and shade (a maximal PPFD of 200–250 μmol m−2 s−1). However, these two parameters of GFP were highest in plants grown under the shade and lowest in full sun-grown plants. Both GL and GFP of plants exposed to full sunlight had lower predawn Fv/Fm [dark adapted ratio of variable to maximal fluorescence (the maximal photosystem 2 yield without actinic irradiation)] than those of shade-grown plants. When exposed to intermediate sunlight, however, there were no significant changes in predawn Fv/Fm in GL whereas a significant decrease in predawn Fv/Fm was found in GFP of the same plant. GFP exposed to full sunlight exhibited a greater decrease in predawn Fv/Fm compared to those exposed to intermediate sunlight. The patterns of changes in total chlorophyll (Chl) content of GL and GFP were similar to those of Fv/Fm. Although midday Fv/Fm fluctuated with prevailing irradiance, changes of midday Fv/Fm after exposure to different growth irradiances were similar to those of predawn Fv/Fm in both GL and GFP. The decreases in predawn and midday Fv/Fm were much more pronounced in GFP than in GL under full sunlight, indicating greater sensitivity in GFP to high irradiance (HI). In the laboratory, electron transport rate and photochemical and non-photochemical quenching of Chl fluorescence were also determined under different irradiances. All results indicated that GFP are more susceptible to HI than GL. Although the GFP of Dendrobium cv. Burana Jade require a lower amount of radiant energy for photosynthesis and this plant is usually grown in the shade, is not necessarily a shade plant.  相似文献   

14.
La Porta  N.  Bertamini  M.  Nedunchezhian  N.  Muthuchelian  K. 《Photosynthetica》2004,42(2):263-271
Photoinhibition of photosynthesis was studied in young and mature detached sun needles of cypress under high irradiance (HI) of about 1 900 mol m–2 s–1. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and electron transport measurements. Compared with the mature needles, the young needles, containing about half the amount of Chl a+b per unit area, exhibited a higher proportion of total carotenoids (Car) as xanthophyll cycle pigments and had an increased ratio of Car/Chl a+b. The potential efficiency of photosystem (PS) 2, Fv/Fm, markedly declined in HI-treated young needles without significant increase of F0 level. In contrast, the Fv/Fm ratio declined with significant increase of F0 level in mature needles. In isolated thylakoids, the rate of whole chain and PS2 activity markedly decreased in young HI-needles in comparison with mature needles. A smaller inhibition of PS1 activity was observed in both needles. In the subsequent dark incubation, fast recovery was found in both needle Types that reached maximum PS2 efficiencies similar to those observed in non-photoinhibited needles. The artificial exogenous electron donors DPC, NH2OH, and Mn2+ failed to restore the HI-induced loss of PS2 activity in mature needles, while DPC and NH2OH significantly restored it in young needles. Hence, HI-inactivation was on the donor side of PS2 in young needles and on the acceptor side of PS2 in mature needles. Quantification of the PS2 reaction centre proteins D1 and 33 kDa protein of water splitting complex following HI-exposure of needles showed pronounced differences between young and mature needles. The large loss of PS2 activity in HI-needles was due to the marked loss of D1 protein of the PS2 reaction centre in mature needles and of the 33 kDa protein in young needles.  相似文献   

15.
Chlorophyll fluorescence parameter Fv/Fm, an indicator of the maximum efficiency of PS2, is routinely measured in the field with plant leaves darkened by leaf clips. I found that on a sunny day of subtropical summer, the Fv/Fm ratio was often underestimated because of a large F0 value resulted from a high leaf temperature caused by clipping the leaf under high irradiance, especially for long (e.g. 20 min) duration. This phenomenon may overestimate the down-regulation of PS2 efficiency under high irradiance. When leaf temperature was lower than 40 °C, the F0 level of rice leaves under clipping remained practically unchanged. However, F0 increased drastically with leaf temperature rising over 40 °C. In most measurements, no significant difference in Fm was found between rice leaves dark-adapted by leaf clips for 10 min and for 20 min. Therefore, shading leaf clips to prevent a drastic increase of leaf temperature, using F0 measured immediately after the leaf being darkened to calculate Fv/Fm, as well as shortening the duration of leaf clipping are useful means to avoid an underestimate of Fv/Fm.  相似文献   

16.
We have studied the effect of grapevine leafroll infection on some features of the thylakoids from field grown grapevine (Vitis vinifera L.) leaves. Changes in photosynthetic pigments, soluble proteins, ribulose‐1,5‐bisphosphate carboxylase (RuBP), nitrate reductase, photosynthetic activities and thylakoid membrane proteins were investigated. The level of total chlorophyll (Chl) and carotenoids were reduced in virus‐infected leaves. Similar results were also observed for soluble proteins and RuBP case activity. The in vivo nitrate reductase activity was significantly reduced in infected leaves. Virus infection considerably decreased leaf net photosynthetic rate (Pn), stomatal conductance (gs) and transpiration rate (E) in grapevine leaves. When various photosynthetic activities were followed in isolated thylakoids, virus infection caused marked inhibition of whole chain and photosystem (PS) II activity while the inhibition of PSI activity was only marginal. The artificial exogenous electron donors, diphenyl carbazide and hydroxylamine (NH2OH) significantly restored the loss of PSII activity in infected leaves. The same results were obtained when Fv/Fm was evaluated by Chl fluorescence measurements. The marked loss of PSII activity in infected leaves could be due to the loss of 47, 43, 33, 28–25, 23 and 17 kDa polypeptides. It is concluded that virus infection inactivates the donor side of PSII. This conclusion was confirmed by immunological studies showing that the content of the 33 kDa protein of the water‐splitting complex was diminished significantly in infected leaves.  相似文献   

17.
Adult trees of Quercus petraea were submitted to controlled water shortage in a natural stand near Nancy, France. Diurnal course of net CO2 assimilation rate (A) was measured in situ together with chlorophyll a fluorescence determined on dark adapted leaves. In 1990, trees experienced a strong water stress, with predawn and midday leaf water potentials below –2·0 and –3·0 MPa, respectively. Diurnal course of A of well-watered trees exhibited sometimes important midday decreases in A related to high temperature and vapour pressure deficit. Decreases in initial (Fo) and maximal (Fm) fluorescence and sometimes in photochemical efficiency of photosystem II (Fv/Fm) were observed and probably revealed the onset of mechanisms for thermal de-excitation. These mechanisms were shown to be sensitive to dithiothreitol. All these effects were reversible and vanished almost completely overnight. Therefore, they may be considered as protective mechanisms adjusting activity of photosystem II to the electron requirement for photosynthesis. Water stress amplified these reactions: A was strongly decreased, showing important midday depression; diurnal reductions in Fm and Fv/Fm were enhanced. The same trends were observed during summer 1991, despite a less marked drought. These protective mechanisms seemed very effective, as no photoinhibitory damage to PS II could be detected in either water stressed or control trees.  相似文献   

18.
This contribution is a practical guide to the measurement of the different chlorophyll (Chl) fluorescence parameters and gives examples of their development under high-irradiance stress. From the Chl fluorescence induction kinetics upon irradiation of dark-adapted leaves, measured with the PAM fluorometer, various Chl fluorescence parameters, ratios, and quenching coefficients can be determined, which provide information on the functionality of the photosystem 2 (PS2) and the photosynthetic apparatus. These are the parameters Fv, Fm, F0, Fm′, Fv′, NF, and ΔF, the Chl fluorescence ratios Fv/Fm, Fv/F0, ΔF/Fm′, as well as the photochemical (qP) and non-photochemical quenching coefficients (qN, qCN, and NPQ). qN consists of three components (qN = qE + qT + qI), the contribution of which can be determined via Chl fluorescence relaxation kinetics measured in the dark period after the induction kinetics. The above Chl fluorescence parameters and ratios, many of which are measured in the dark-adapted state of leaves, primarily provide information on the functionality of PS2. In fully developed green and dark-green leaves these Chl fluorescence parameters, measured at the upper adaxial leaf side, only reflect the Chl fluorescence of a small portion of the leaf chloroplasts of the green palisade parenchyma cells at the upper outer leaf half. Thus, PAM fluorometer measurements have to be performed at both leaf sides to obtain information on all chloroplasts of the whole leaf. Combined high irradiance (HI) and heat stress, applied at the upper leaf side, strongly reduced the quantum yield of the photochemical energy conversion at the upper leaf half to nearly zero, whereas the Chl fluorescence signals measured at the lower leaf side were not or only little affected. During this HL-stress treatment, qN, qCN, and NPQ increased in both leaf sides, but to a much higher extent at the lower compared to the upper leaf side. qN was the best indicator for non-photochemical quenching even during a stronger HL-stress, whereas qCN and NPQ decreased with progressive stress even though non-photochemical quenching still continued. It is strongly recommended to determine, in addition to the classical fluorescence parameters, via the PAM fluorometer also the Chl fluorescence decrease ratio RFd (Fd/Fs), which, when measured at saturation irradiance is directly correlated to the net CO2 assimilation rate (P N) of leaves. This RFd-ratio can be determined from the Chl fluorescence induction kinetics measured with the PAM fluorometer using continuous saturating light (cSL) during 4–5 min. As the RFd-values are fast measurable indicators correlating with the photosynthetic activity of whole leaves, they should always be determined via the PAM fluorometer parallel to the other Chl fluorescence coefficients and ratios.  相似文献   

19.
Li  X.-G.  Meng  Q.-W.  Jiang  G.-Q.  Zou  Q. 《Photosynthetica》2003,41(2):259-265
The photoprotection of energy dissipation and water-water cycle were investigated by comparing chilling sensitivity of photosystems 2 (PS2) and 1 (PS1) in two chilling-sensitive plants, cucumber and sweet pepper, upon exposure to 4 °C under low irradiance (100 μmol m−2 s−1) for 6 h. During chilling stress, the maximum photochemical efficiency of PS2 (Fv/Fm) decreased only slightly in both plants, but the oxidisable P700 decreased markedly, which indicated that PS1 was more sensitive to chilling treatment under low irradiance than PS2. Sweet pepper leaves had lower Fv/Fm, higher non-photochemical quenching (NPQ), and higher oxidisable P700 during chilling stress. Activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in cucumber leaves was higher, but APX activity decreased apparently compared to that at room temperature. The productions of active oxygen species (H2O2, O2 ) increased in both plants, faster in cucumber leaves than in sweet pepper leaves. In sweet pepper leaves, a stronger de-epoxidation of the xanthophyll cycle pigments, a higher NPQ could act as a major protective mechanism to reduce the formation of active oxygen species during stress. Thus sensitivity of both plants to chilling under low irradiance was dominated by the protective mechanisms between PS1 and PS2, especially the energy dissipation and the water-water cycle. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Under severe water stress, leaf wilting is quite general in higher plants. This passive movement can reduce the energy load on a leaf. This paper reports an experimental test of the hypothesis that leaf wilting movement has a protective function that mitigates against photoinhibition of photosynthesis in the field. The experiments exposed cotton (Gossypium hirsutum L.) to two water regimes: water-stressed and well-watered. Leaf wilting movement occurred in water-stressed plants as the water potential decreased to −4.1 MPa, reducing light interception but maintaining comparable quantum yields of photosystem II (PS II; Yield for short) and the proportion of total PS II centers that were open (qP). Predrawn F v/F m (potential quantum yield of PS II) as an indicator of overnight recovery of PS II from photoinhibition was higher than or similar to that in well-watered plants. Compared with water-stressed cotton leaves for which wilting movement was permitted, water-stressed cotton leaves restrained from such movement had significantly increased leaf temperature and instantaneous CO2 assimilation rates in the short term, but reduced Yield, qP, and F v/F m. In the long term, predrawn F v/F m and CO2 assimilation capacity were reduced in water-stressed leaves restrained from wilting movement. These results suggest that, under water stress, leaf wilting movement could reduce the incident light on leaves and their heat load, alleviate damage to the photosynthetic apparatus due to photoinhibition, and maintain considerable carbon assimilation capacity in the long term despite a partial loss of instantaneous carbon assimilation in the short term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号