首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P. Giorio 《Photosynthetica》2011,49(3):371-379
Tomato and pepper leaves were clipped with black leaf clips for dark adaptation under solar radiation in the late spring or early summer 2010 in southern Italy. The leaves showed highly variable maximum PSII quantum yield (Fv/Fm = 0.026−0.802) using a continuous-excitation fluorometer Pocket PEA. These results were confirmed using the modulated fluorometer FMS1 on tomato leaves in mid summer, with Fv/Fm as low as 0.222 ± 0.277 due to nearly equal minimum (Fo) and maximum (Fm) fluorescence emission. A significant clip effect on Fv/Fm occurred after only 12 (tomato) or 25 (pepper) min. Increasing the leaf temperature from 25 to 50°C reportedly induced an Fo increase and Fm decrease so that Fv/Fm approached zero. The hypothesis that black leaf clips overheated under intense solar irradiance was verified by shrouding the clipped leaves with aluminum foil. In clipped leaves of pepper, Fv/Fm with the black clip/Pocket-PEA was 0.769 ± 0.025 (shrouded) and as low as 0.271 ± 0.163 (nonshrouded), the latter showing a double Fo and 32% lower Fm. An 8% clip effect on Fv/Fm was observed with the white clip/FMS1. To avoid the clip effect in high irradiance environments, Fv/Fm measurements with black clip/Pocket PEA system required leaf dark adaptation with radiation-reflecting shrouds. It would be useful if manufacturing companies could develop better radiation-reflecting leaf clips for the Pocket PEA fluorometer.  相似文献   

2.
In order to elucidate the effects of chilling-stress at night on photosystem 2 (PS2) efficiency under dim irradiance (DI), mango leaves were chilled to varied extent (8–3 °C) and for varied duration (0–12 h) in growth cabinets in the dark, and then exposed to DI (20 μmol m−2 s−1 PPFD) at each chilling-temperature for 1 h. Chilling in the dark had little effect on Fv/Fm of mango leaves. But both the extent and duration of chilling pre-treatments significantly affected Fv’/Fm’ when leaves were exposed to DI. This down-regulation of PS2 efficiency was closely related to xanthophyll de-epoxidation, assessed as photochemical reflectance index (PRI) and calculated from leaf spectral reflectance [(R531 − R570)/(R531 + R570)], and non-photochemical quenching (NPQ). The down-regulation of PS2 is a defence mechanism initiated at predawn in winter to alleviate the damage of PS2 by the sudden and strong irradiation at sunrise. Mango leaves, transferred suddenly from warm and dark room to DI and chilling showed a slight down-regulation of PS2 efficiency, in spite of an increased xanthophyll de-epoxidation. This might have been due to the unavailability of some cofactors required for NPQ.  相似文献   

3.
The influence of irradiance on photosynthesis under natural conditions was studied in aseasonal Singapore using three Heliconia taxa: H. rostrata, H. psittacorum × H. spathocircinata cv. Golden Torch and H. psittacorum cv. Tay. When grown under full sunlight, all three heliconias exhibited reduced phatosynthetic capacities and lowered chlorophyll content per leaf area as compared with those grown under intermediate and deep shade. A marked decrease in the chlorophyll fluorescence Fv/Fm ratio and an increase in photochemical quenching (1- qp) and non-photochemical quenching (qN) were observed in upper leaves of plants grown under full sunlight. Increases in qN suggest that ‘photoinhibition’ (decreases in Fv/Fm) in Heliconia grown under natural tropical conditions are probably due to photoprotective energy dissipation processes. The quantum yield, the maximum photosynthetic rate, Fv/Fm and the chlorophyll content of upper leaves were lower than those of lower leaves on the same plants grown under full sunlight. Similarly, lower values were obtained for the tip (sun) portion than for the base (shaded) portion of the leaves. The changes in Fv/Fm and in the levels of (1 –qp) in leaves grown under intermediate and deep shade were negligible in plants during the course of day. However, there was a steep decrease in Fv/Fm and an increase in the levels of (1 –qp), along with an increase in incident light in the sun leaves. The lowest Fv/Fm and the highest level of (1 –qp) indicated minimum PSII efficiency at midday in full sun. These results indicate that, in Heliconia, the top leaves (particularly leaf tips) experienced sustained decreases in PSII efficiency upon exposure to full sunlight. Although all three taxa exhibited sustained decreases in photosynthetic capacity in full sunlight, the sun leaves of ‘Tay’ showed higher photosynthetic capacity than those of the other two taxa. This could be due, at least in part, to the vertical leaf angle and smaller lamina area. When the upright leaves of ‘Tay’ were constrained to a horizontal angle, they exhibited lower PSII efficiency (FvIFm ratio), while horizontal leaves of ‘Rostrata’ and ‘Golden Torch’ inclined lo near-vertical angles showed increased efficiency. Thus, an increase in leaf angle helps to achieve a reduction in the sustained decrease in PSII efficiency by decreasing the levels of incident sunlight and subsequently the leaf temperature.  相似文献   

4.
Photoinhibition under irradiance of 2 000 μmol m−2 s−1 (HI) was studied in detached control (C) and water deficit (WD) leaves of grapevine (Vitis vinifera L.) plants. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and electron transport measurements. The potential efficiency of photosystem (PS) 2, Fv/Fm, marginally declined under HI in WD-leaves without significant increase of F0. In contrast, Fv/Fm ratio declined markedly with significant increase of F0 in C-leaves. In isolated thylakoids, the rate of whole chain and PS2 activity under HI were more decreased in C-than WD-leaves. The artificial exogenous electron donors diphenyl carbazide, NH2OH, and Mn2+ failed to restore the HI-induced loss of PS2 activity in both C-and WD-leaves. Thus HI operates at the acceptor side of PS2 in both leaf types. Quantification of the PS2 reaction centre protein D1 following HI exposure of leaves showed pronounced differences between C-and WD-leaves. The marked loss of PS2 activity under HI of C-leaves was due to the marked loss of D1 protein of the PS2 reaction centre.  相似文献   

5.
The degree of photoinhibition of sun and shade grown leaves of grapevine was determined by means of the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and electron transport measurements. The potential efficiency of photosystem 2 (PS2), Fv/Fm, markedly declined under high irradiance (HI) in shade leaves with less than 10 % of F0 level. In contrast, Fv/Fm ratio declined with about 20 % increase of F0 level in sun leaves. In isolated thylakoids, the rate of whole chain and PS2 activity in HI shade and sun leaves was decreased by about 60 and 40 %, respectively. A smaller inhibition of photosystem 1 (PS1) activity was also observed in both leaf types. In the subsequent dark incubation, fast recovery was observed in both leaf types that reached maximum PS2 efficiencies similar to non-photoinhibited control leaves. The artificial exogenous electron donors DPC, NH2OH, and Mn2+ failed to restore the HI-induced loss of PS2 activity in sun leaves, while DPC and NH2OH were significantly restored in shade leaves. Hence HI in shade leaves inactivates on the donor side of PS2 whereas it does at the acceptor side in sun leaves, respectively. Quantification of the PS2 reaction centre protein D1 and the 33 kDa protein of water splitting complex following HI-treatment of leaves showed pronounced differences between shade and sun leaves. The marked loss of PS2 activity in HI leaves was due to the marked loss of D1 protein of the PS2 reaction centre protein and the 33 kDa protein of the water splitting complex in sun and shade leaves, respectively.  相似文献   

6.
Li  X.-G.  Meng  Q.-W.  Jiang  G.-Q.  Zou  Q. 《Photosynthetica》2003,41(2):259-265
The photoprotection of energy dissipation and water-water cycle were investigated by comparing chilling sensitivity of photosystems 2 (PS2) and 1 (PS1) in two chilling-sensitive plants, cucumber and sweet pepper, upon exposure to 4 °C under low irradiance (100 μmol m−2 s−1) for 6 h. During chilling stress, the maximum photochemical efficiency of PS2 (Fv/Fm) decreased only slightly in both plants, but the oxidisable P700 decreased markedly, which indicated that PS1 was more sensitive to chilling treatment under low irradiance than PS2. Sweet pepper leaves had lower Fv/Fm, higher non-photochemical quenching (NPQ), and higher oxidisable P700 during chilling stress. Activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in cucumber leaves was higher, but APX activity decreased apparently compared to that at room temperature. The productions of active oxygen species (H2O2, O2 ) increased in both plants, faster in cucumber leaves than in sweet pepper leaves. In sweet pepper leaves, a stronger de-epoxidation of the xanthophyll cycle pigments, a higher NPQ could act as a major protective mechanism to reduce the formation of active oxygen species during stress. Thus sensitivity of both plants to chilling under low irradiance was dominated by the protective mechanisms between PS1 and PS2, especially the energy dissipation and the water-water cycle. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
The use of black leaf-clips for dark adaptation under high solar radiation conditions is reported to underestimate the maximum quantum yield of PSII photochemistry (Fv/Fm) measured by the continuous-excitation fluorometer Pocket PEA. The decrease in Fv/Fm was due to a rise in minimum fluorescence emission (Fo), probably resulting from increased leaf temperature (Tl). In field-grown tomato and pepper, fluorescence parameters and Tl in the region covered by the black leaf clip were measured in clipped leaves exposed to solar radiation during dark adaptation (clipped-only leaves) and in clipped leaves protected from solar radiation by aluminium foil (shrouded clipped leaves). Results confirmed significant Fv/Fm underestimates in clipped-only leaves primarily due to increased Fo. In one tomato experiment, Tl increased from 30 to 44.5°C in clipped-only leaves, with a negligible rise in shrouded clipped leaves. In two respective pepper experiments, Tl in clipped-only leaves increased from 27 to 36.2°C and 33 to 40.9°C. Based on the results of this study, a clip-effect parameter (PCE) on fluorescence emission is proposed as the difference for Fv/Fm (or ?Fo/Fm) between shrouded clipped leaves and clipped-only leaves, which resulted to be 0.706 for tomato, and 0.241 and 0.358 for the two pepper experiments.  相似文献   

8.
The function of chloroplast ferredoxin quinone reductase (FQR)-dependent flow was examined by comparing a wild type tobacco and a tobacco transformant (ΔndhB) in which the ndhB gene had been disrupted with their antimycin A (AA)-fed leaves upon exposure to chilling temperature (4 °C) under low irradiance (100 μmol m−2 s−1 photon flux density). During the chilling stress, the maximum photochemical efficiency of photosystem (PS) 2 (Fv/Fm) decreased markedly in both the controls and AA-fed leaves, and P700+ was also lower in AA-fed leaves than in the controls, implying that FQR-dependent cyclic electron flow around PS1 functioned to protect the photosynthetic apparatus from chilling stress under low irradiance. Under such stress, non-photochemical quenching (NPQ), particularly the fast relaxing NPQ component (qf) and the de-epoxidized ratio of the xanthophyll cycle pigments, (A+Z)/(V+A+Z), formed the difference between AA-fed leaves and controls. The lower NPQ in AA-fed leaves might be related to an inefficient proton gradient across thylakoid membranes (ΔpH) because of inhibiting an FQR-dependent cyclic electron flow around PS1 at chilling temperature under low irradiance.  相似文献   

9.
This contribution is a practical guide to the measurement of the different chlorophyll (Chl) fluorescence parameters and gives examples of their development under high-irradiance stress. From the Chl fluorescence induction kinetics upon irradiation of dark-adapted leaves, measured with the PAM fluorometer, various Chl fluorescence parameters, ratios, and quenching coefficients can be determined, which provide information on the functionality of the photosystem 2 (PS2) and the photosynthetic apparatus. These are the parameters Fv, Fm, F0, Fm′, Fv′, NF, and ΔF, the Chl fluorescence ratios Fv/Fm, Fv/F0, ΔF/Fm′, as well as the photochemical (qP) and non-photochemical quenching coefficients (qN, qCN, and NPQ). qN consists of three components (qN = qE + qT + qI), the contribution of which can be determined via Chl fluorescence relaxation kinetics measured in the dark period after the induction kinetics. The above Chl fluorescence parameters and ratios, many of which are measured in the dark-adapted state of leaves, primarily provide information on the functionality of PS2. In fully developed green and dark-green leaves these Chl fluorescence parameters, measured at the upper adaxial leaf side, only reflect the Chl fluorescence of a small portion of the leaf chloroplasts of the green palisade parenchyma cells at the upper outer leaf half. Thus, PAM fluorometer measurements have to be performed at both leaf sides to obtain information on all chloroplasts of the whole leaf. Combined high irradiance (HI) and heat stress, applied at the upper leaf side, strongly reduced the quantum yield of the photochemical energy conversion at the upper leaf half to nearly zero, whereas the Chl fluorescence signals measured at the lower leaf side were not or only little affected. During this HL-stress treatment, qN, qCN, and NPQ increased in both leaf sides, but to a much higher extent at the lower compared to the upper leaf side. qN was the best indicator for non-photochemical quenching even during a stronger HL-stress, whereas qCN and NPQ decreased with progressive stress even though non-photochemical quenching still continued. It is strongly recommended to determine, in addition to the classical fluorescence parameters, via the PAM fluorometer also the Chl fluorescence decrease ratio RFd (Fd/Fs), which, when measured at saturation irradiance is directly correlated to the net CO2 assimilation rate (P N) of leaves. This RFd-ratio can be determined from the Chl fluorescence induction kinetics measured with the PAM fluorometer using continuous saturating light (cSL) during 4–5 min. As the RFd-values are fast measurable indicators correlating with the photosynthetic activity of whole leaves, they should always be determined via the PAM fluorometer parallel to the other Chl fluorescence coefficients and ratios.  相似文献   

10.
Photoinactivation of Photosystem (PS) II in vivo was investigated by cumulative exposure of pea, rice and spinach leaves to light pulses of variable duration from 2 to 100 s, separated by dark intervals of 30 min. During each light pulse, photosynthetic induction occurred to an extent depending on the time of illumination, but steady-state photosynthesis had not been achieved. During photosynthetic induction, it is clearly demonstrated that reciprocity of irradiance and duration of illumination did not hold: hence the same cumulative photon exposure (mol m–2) does not necessarily give the same extent of photoinactivation of PS II. This contrasts with the situation of steady-state photosynthesis where the photoinactivation of PS II exhibited reciprocity of irradiance and duration of illumination (Park et al. (1995) Planta 196: 401–411). We suggest that, for reciprocity to hold between irradiance and duration of illumination, there must be a balance between photochemical (qP) and non-photochemical (NPQ) quenching at all irradiances. The index of susceptibility to light stress, which represents an intrinsic ability of PS II to balance photochemical and non-photochemical quenching, is defined by the quotient (1-qP)/NPQ. Although constant in steady-state photosynthesis under a wide range of irradiance (Park et al. (1995). Plant Cell Physiol 36: 1163–1169), this index of susceptibility for spinach leaves declined extremely rapidly during photosynthetic induction at a given irradiance, and, at a given cumulative photon exposure, was dependent on irradiance. During photosynthetic induction, only limited photoprotective strategies are developed: while the transthylakoid pH gradient conferred some degree of photoprotection, neither D1 protein turnover nor the xanthophyll cycle was operative. Thus, PS II is more easily photoinactivated during photosynthetic induction, a phenomenon that may have relevance for understorey leaves experiencing infrequent, short sunflecks.Abbreviations D1 protein psbA gene product - DTT dithiothreitol - Fv, Fm, Fo variable, maximum, and initial (corresponding to open traps) chlorophyll fluorescence yield, respectively - NPQ non-photochemical quenching - PS Photosystem - QA primary quinone acceptor of PS II - qP photochemical quenching coefficient  相似文献   

11.
In six dominant species of the Amazonian ‘Bana’ vegetation, leaf blade characteristics, pigment composition, and chlorophyll (Chl) fluorescence parameters were measured in young and mature leaves under field conditions. Leaf δ13C was comparable in the six species, which suggested that both expanding and expanded leaves contained organic matter fixed under similar intercellular and ambient CO2 concentration (C i/C a). High leaf C/N and negative δ15N values found in this habitat were consistent with the extreme soil N-deficiency. Analysis of Chl and carotenoids showed that expanding leaves had an incomplete development of photosynthetic antenna when compared to adult leaves. Dynamic inactivation of photosystem 2 (PS2) at midday was observed at both leaf ages as Fv/Fm decreased compared to predawn values. Adult leaves reached overnight Fv/Fm ratios typical of healthy leaves. Overnight recovery of Fv/Fm in expanding leaves was incomplete. F0 remained unchanged from midday to predawn and Fv tended to increase from midday to predawn. The recovery from midday depression observed in adult leaves suggested an acclimatory down-regulation associated with photo-protection and non-damage of PS2.  相似文献   

12.
Bertamini  M.  Nedunchezhian  N. 《Photosynthetica》2003,41(4):611-617
Photoinhibition of photosynthesis was investigated in grapevine (Vitis vinifera L.) exposed to 2 or 4h of high irradiance (HI) (1 700–1 800 mol m–2 s–1) leaves under field conditions at different sampling time in a day. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm) and photosynthetic electron transport measurements. When the photochemical efficiency of photosystem 2 (PS2), Fv/Fm, markedly declined, F0 increased in both 2 (HI2) and 4 h (HI4) HI leaves sampled at midday. When various photosynthetic activities were followed on isolated thylakoids, HI4 leaves showed significantly higher inhibition of whole chain and PS2 activity than the HI2 leaves sampled at midday. Later, the leaves reached maximum PS2 efficiencies similar to those observed early in the morning during sampling at evening. The artificial exogenous electron donor Mn2+ failed to restore PS2 activity in both variants of leaves, while DPC and NH2OH significantly restored PS2 activity in HI4 midday leaf samples. Quantification of the PS2 reaction centre protein D1 and 33 kDa protein of water splitting complex following midday exposure of leaves showed pronounced differences between HI2 and HI4 leaves. The marked loss of PS2 activity noticed in midday samples was mainly due to the marked loss of D1 protein in HI2, while in HI4 it was mainly 33-kDa protein.  相似文献   

13.
Diurnal cycle of chlorophyll fluorescence parameters was done in Colocasia esculenta L. (swamp taro) grown in marshy land under sun or under shade. The sun leaves maintained higher electron transport rate (ETR) and steady state to initial fluorescence ratio (Fs/F0) than shade leaves. In spite of lower ETR, higher photochemical quenching (PQ), and effective quantum yield of photosystem 2 (ΦPS2) was evident in shade plants compared to plants exposed to higher irradiance. ETR increased linearly with increase in irradiance more under low irradiance (r 2 = 0.84) compared to higher irradiance (r 2 = 0.62). The maximum quantum yield of PS 2 (Fv/Fm) did not differ much in sun and shade leaves with the exception of midday when excess of light energy absorbed by plants under sun was thermally dissipated. Hence swamp taro plants adopted different strategies to utilize radiation under different irradiances. At higher irradiance, there was faster decline in proportion of open PS 2 centers (PQ) and excess light energy was dissipated through non-photochemical quenching (NPQ). Under shade, absorbed energy was effectively utilized resulting in higher ΦPS2.  相似文献   

14.
Jiao  Demao  Ji  Benhua  Li  Xia 《Photosynthetica》2003,41(1):33-41
With japonica rice 98-08, indica hybrids Shanyou 63, Gangyou 881, and X07S/Zihui 100, and sub-species hybrid Peiai 64S/9311 as materials, chlorophyll (Chl) content, Chl a fluorescence parameters, and membrane lipid peroxidation in flag leaf were measured at late developmental stages under natural conditions. Fv/Fm, qP, PS2, and electron transport rate gradually decreased while qN increased conversely. Excessive photon energy led to the accumulation of active oxygen (O2 ), H2O, malonyldialdehyde, and products of membrane lipid peroxidation, and resulted in reduced Chl content and early ageing subsequent to the photooxidation during flag leaf senescence. There was obvious diversification of these parameters among rice cultivars. In comparison with japonica cv. 98-08 (tolerant to photooxidation), Fv/Fm decreased in indica cv. Shanyou 63 (susceptible to photooxidation) with greater accumulation of active oxygen and a sharp drop in Chl content, which resulted in yellowish early ageing, and affected the filling and setting of rice grains. The mechanism for premature ageing in indica rice was related to irradiance and temperature at filling stages. On a sunny day at above 25 °C, the reaction centre of photosystem 2 (PS2) exhibited a dynamic change on reversible inactivation. Under the intense irradiance at noon, PS2 function in indica rice exhibited obvious down-regulation and photoinhibition. Under intense irradiance with lowered temperatures, PS2 resulted in photo-damage and early ageing, related to the degradation of PS2-D1 protein and the inhibition of endogenous protection systems such as the xanthophyll cycle and enzymes scavenging active oxygen. Hence for high-yield breeding, based on a good plant-type and utilising heterosis and tolerance of photooxidation, the selection of japonica rice or a sterile line with the japonica genotype as female is a strategy worthy of consideration.  相似文献   

15.
Photosynthetic rate (PN) and chlorophyll (Chl) fluorescence induction of source leaves in response to a low sink demand created by girdling the branch (GB) between the root-tuber-system and the leaves were studied in Dahlia pinnata L. cv. Rigolet during the stage of rapid tuber growth in the greenhouse. GB resulted in significantly lower values of PN, stomatal conductance (gs), and transpiration rate (E), but in higher leaf temperature (Tl) compared with those of controls. With exception of maximum quantum yield of photosystem 2 (PS 2) photochemistry (Fv/Fm) and maximum ratio of quantum yields of photochemical and concurrent non-photochemical processes in PS 2 (Fv/F0), no significant differences were observed in Chl fluorescence parameters between girdled and control leaves on days 1 and 2 after GB, indicating no apparent damage in the photosynthetic apparatus. However, longer girdling duration resulted in higher non-photochemical Chl fluorescence quenching (NPQ), but lower Fv/F0, actual efficiency of energy conversion in PS 2 under steady-state conditions (ΦPS2), and photochemical quenching coefficient (qP) in comparison with controls from 10:00 to 16:00 or 15:00 on days 4 and 5, respectively, indicating reversible injury in the photosynthetic apparatus.  相似文献   

16.
Photoinhibition of photosynthesis was investigated in control (C) and chilling night (CN) leaves of grapevine under natural photoperiod at different sampling time in a day. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm) and photosynthetic electron transport measurements. When the potential efficiency of photosystem (PS) 2, Fv/Fm was measured at midday, it markedly declined with significant increase of F0 in CN leaves. In isolated thylakoids, the rate of whole chain and PS2 activity were markedly decreased in CN leaves than control leaves at midday. A smaller inhibition of PS1 activity was also observed in both leaf types. Later, the leaves reached maximum PS2 efficiencies similar to those observed in the morning during sampling at evening. The artificial exogenous electron donors diphenyl carbazide, NH2OH, and Mn2+ failed to restore the PS2 activity in both leaf types at midday. Thus CN enhanced inactivation on the acceptor side of PS2 in grapevine leaves. Quantification of the PS2 reaction centre protein D1 following midday exposure of leaves showed pronounced differences between C and CN leaves. The marked loss of PS2 activity in CN leaves noticed in midday samples was mainly due to the marked loss of D1 protein of the PS2 reaction centre.  相似文献   

17.
18.
The xanthophyll cycle and the water-water cycle had different functional significance in chilling-sensitive sweet pepper upon exposure to chilling temperature (4 °C) under low irradiance (100 µmol m−2 s−1) for 6 h. During chilling stress, effects of non-photochemical quenching (NPQ) on photosystem 2 (PS2) in dithiothreitol (DTT) fed leaves remained distinguishable from that of the water-water cycle in diethyldithiocarbamate (DDTC) fed leaves. In DTT-fed leaves, NPQ decreased greatly accompanied by visible inhibition of the de-epoxidized ratio of the xanthophyll cycle, and maximum photochemical efficiency of PS2 (Fv/Fm) decreased markedly. Thus the xanthophyll cycle-dependent NPQ could protect PS2 through energy dissipation under chilling stress. However, NPQ had a slighter effect on photosystem 1 (PS1) in DTT-fed leaves than in DDTC-fed leaves, whereas effects of the water-water cycle on PS1 remained distinguishable from that of NPQ. Inhibiting superoxide dismutase (SOD) activity increased the accumulation of , the oxidation level of P700 (P700+) decreased markedly relative to the control and DTT-fed leaves. Both Fv/Fm and NPQ changed little in DDTC-fed leaves accompanied by little change of (A+Z)/(V+A+Z). This is the active oxygen species inducing PS1 photoinhibition in sweet pepper. The water-water cycle can be interrupted easily at chilling temperature. We propose that during chilling stress under low irradiance, the xanthophyll cycle-dependent NPQ has the main function to protect PS2, whereas the water-water cycle is not only the pathway to dissipate energy but also the dominant factor causing PS1 chilling-sensitivity in sweet pepper.This research was supported by the State Key Basic Research and Development Plan of China (G1998010100), the Natural Science Foundation of China (30370854), and the open project from Key Lab of Crop Biology of Shandong Province.  相似文献   

19.
Tolerance of photosystem 2 (PS2) to high temperature in apple (Malus domestica Borkh. cv. Cortland) leaves and peel was investigated by chlorophyll a fluorescence (OJIP) transient after exposure to 25 (control), 40, 42, 44, and 46 °C in the dark for 30 min. The positive L-step was more pronounced in a peel than in leaves when exposed to 44 °C. Heat-induced K-step became less pronounced in leaves than in peel when exposed to 42 °C or higher temperature. Leaves had negative L-and K-steps relative to the peel. The decrease of oxygen-evolving complex (OEC) by heat stress was higher in the peel than in the leaves. OJIP transient from the 46 °C treated peel could not reach the maximum fluorescence (Fm). The striking thermoeffect was the big decrease in the relative variable fluorescence at 30 ms (VI), especially in the leaves. Compared with the peel, the leaves had less decreased maximum PS2 quantum efficiency (Fv/Fm), photochemical rate constant (KP), Fm and performance index (PI) on absorption basis (PIabs) and less increased minimum fluorescence (F0) and non-photochemical rate constant (KN), but more increased reduction of end acceptors at PS1 electron acceptor side per cross section (RE0/CS0) and per reaction center (RE0/RC0), quantum yield of electron transport from QA to the end acceptors (ϕ R0) and total PI (PIabs,total) when exposed to 44 °C. In conclusion, PS2 is more thermally labile than PS1. The reduction of PS2 activity by heat stress primarily results from an inactivation of OEC. PS2 was more tolerant to high temperature in the leaves than in the peel.  相似文献   

20.
We examined photosynthetic activities and thermostability of photosystem 2 (PS2) in leaves of elm (Ulmus pumila) seedlings from initiation to full expansion. During leaf development, net photosynthetic rate (P N) increased gradually and reached the maximum when leaves were fully developed. In parallel with the increase of P N, chlorophyll (Chl) content was significantly elevated. Chl a fluorescence measurements showed that the maximum quantum yield of PS2 (ϕPS2), the efficiency a trapped exciton, moved an electron into the electron transport chain further than QA o), and the quantum yield of electron transport beyond QAEo) increased gradually. These results were independently confirmed by our low irradiance experiments. When subjected to progressive heat stress, the young leaves exhibited considerably lower ϕPS2 and higher minimal fluorescence (F0) than the mature leaves, revealing the highly sensitive nature of PS2 under heat in the newly initiating leaves. Further analysis showed that PS2 structure in the newly initiating leaves was strongly altered under heat, as evidenced by the increased fluorescence signals at the position of the K step. We therefore demonstrated an inhibition in the oxygen-evolving complex (OEC) in the young leaves. This resulted in decrease in amount of the functional PS2 reaction centres and relative increase in the PS2 reaction centres with inhibited electron transport at the acceptor side under heat. We suggest that the enhanced thermostability of PS2 during leaf development is associated with improved OEC stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号