首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 282 毫秒
1.
Homoeology of rye chromosome arms to wheat   总被引:5,自引:0,他引:5  
Summary Cytological markers such as diagnostic C-bands, telocentrics, and translocations were used to identify the arms of rye chromosomes associated with wheat chromosomes at metaphase I in ph1b mutant wheat × rye hybrids. Arm homoeologies of rye chromosomes to wheat were established from the results of metaphase I pairing combined with available data on the chromosomal location of homoeoloci series in wheat and rye. Only arms 1RS, 1RL, 2RL, 3RS, and 5RS showed normal homoeologous relationships to wheat. The remaining arms of rye appeared to be involved in chromosome rearrangements that occurred during the evolution of the genus Secale. We conclude that a pericentric inversion in chromosome 4R, a reciprocal translocation between 3RL and 6RL, and a multiple translocation involving 4RL, 5RL, 6RS, and 7RS are present in rye relative to wheat.  相似文献   

2.
Cytogenetic maps involving chromosomes 1R, 3R, 4R and 6R have been developed from the analysis of offspring of crosses between multiple heterozygous rye plants. The maps include isozyme loci GpiR1, Mdh-R1 and Pgd2 (located in chromosome 1R), Mdh-R2 (located in chromosome 3R), Pgm-R1 (located in chromosome 4R) and Aco-R1 (located in chromosome 6R). Various telomeric and interstitial C-bands of these four chromosomes, the centromere split of chromosome 3R, and translocation TR01 were used as cytological markers. By means of electron microscope analysis of spread pachytene synaptonemal complexes, the breakpoint of TR01 was physically mapped in chromosome arms 4RS and 6RL. From the linkage data, conclusions were derived concerning the cytological locations of the isozyme loci and the physical extent of the evolutive translocations involving chromosome arm 6RL.  相似文献   

3.
Two patients with classical features of Angelman syndrome (AS) and one with Prader-Willi syndrome (PWS) had unbalanced reciprocal translocations involving the chromosome 15 proximal long arm and the telomeric region of chromosomes 7, 8 and 10. Fluorescence isitu hybridization (FISH) was used for the detection of chromosome 15(q11-13) deletions (with probes from the PWS/AS region) and to define the involvement of the telomere in the derivative chromosomes (with library probes and telomere-specific probes). The 15(q11-13) region was not deleted in one patient but was deleted in the other two. The telomere on the derivative chromosomes 7, 8 and 10 was deleted in all three cases. Thus, these are true reciprocal translocations in which there has been loss of the small satellited reciprocal chromosome (15) fragment.  相似文献   

4.
M Ray 《Cytobios》1979,25(97):37-43
The chromosome preparations from fibroblasts of normal male and female Chinese hamsters and the cell line CHW were stained with AgNO3. The silver stain was usually localized at the telomeres of autosomes. The marker chromosome M1 in the CHW cell line has Ag-NOR near the centre of the long arm, which indicates that either the long arms of two number 5 chromosomes fused at the telomeres or the intact telomeric region of one chromosome fused with one with a deleted telomere. The variation of Ag-NORs' number per cell and Ag-heteromorphism in chromosome number 4 were observed. The Ag-NORs of chromosome number 4 and 5 are in approximately the same position as the positive C-bands and these may play a role in the preservation of heterochromatin.  相似文献   

5.
Making use of somatic pairing of homologous chromosome arms and of balanced translocations as cytogenetic markers, the three chromosome pairs of the phorid flyMegaselia scalaris have been identified and described. From measurements of the compliments a standard karyotype was constructed. Identification of the chromosomes allows cytogenetic, phenotypic and molecular markers to be assigned to specific chromosomes. Sex linkage of t(1;2) and t(2;3) translocations define chromosome 2 as the normal sex determining chromosome pair in our translocation strains, and therefore also, probably, in the wild-type strain from which they were derived. No differences between X and Y with respect to size of arms or C-bands were detected.  相似文献   

6.
以Giemsa C带技术处理串叶松香草根尖细胞染色体(2n=14),全部着丝点及第5和第7对染色体短臂端部显稳定的C带,第6对染色体长臂有两条明显的居间带,其他居间带小而不稳定(重复率不高)。间期细胞核染色体呈Rable构型,其着丝点一极最多出现20个染色中心。统计分析表明,靠近着丝点的短臂端带区和居间带区异染色质有易与着丝点区异染色质融合的倾向。分裂中期Giemsa C带数目与间期染色中心数目存在数量对应关系。  相似文献   

7.
Shi F  Endo TR 《Chromosoma》2000,109(5):358-363
Chromosome 2C of Aegilops cylindrica induces chromosomal rearrangements in alien chromosome addition lines, as well as in euploid lines, of common wheat. To induce chromosomal rearrangements in barley chromosome 7H, reciprocal crosses were made between a mutation-inducing common wheat line that carries a pair of 7H chromosomes and one 2C chromosome and a 7H disomic addition line of common wheat. Many shrivelled seeds were included in the progeny, which was an indication of the occurrence of chromosome mutations. The chromosomal constitution of the viable progeny was examined by FISH (fluorescence in situ hybridization) using the barley subterminal repeat HvT01 as a probe. Structural changes of chromosome 7H were found in about 15% of the progeny of the reciprocal crosses. The aberrant 7H chromosomes were characterized by a combination of N-banding, FISH and genomic in situ hybridization. Mosaicism for aberrant 7H chromosomes was observed in seven plants. In total, 89 aberrant 7H chromosomes were identified in 82 plants, seven of which had double aberrations. More than half of the plants carried a simple deletion: four short-arm telosomes, one long-arm telosome, and 45 terminal deletions (23 in the short arm, 21 in the long arm, and one involving both arms). About 40% of the aberrations represented translocations between 7H and wheat chromosomes. Twenty of the translocations had wheat centromeres, 12 the 7H centromere, with translocation points in the 7HS (five) and in the 7HL (seven), and the remaining four were of Robertsonian type, three involving 7HS and one with 7HL. In addition, one translocation had a barley segment in an intercalary position of a wheat chromosome, and two were dicentric. The breakpoints of these aberrations were distributed along the entire length of chromosome 7H.  相似文献   

8.
Summary The spontaneous occurrence of chromosome breaks, deletions, and translocations in plant tissue cultures is well documented. This study investigated the usefulness of tissue culture as a method of introgressing alien genes into wheat. Wheat X rye hybrids were regenerated from embryo scutellar calli maintained in culture for 222 days. The regenerated seedlings then were treated with colchicine to produce amphidiploids (AABBDDRR). The karyotypes of ten amphidiploids were analyzed by C-banding to determine chromosome structural changes that occurred during tissue culture. Three wheat/rye and one wheat/wheat chromosome translocations, seven deletions, and five amplifications of heterochromatin bands of rye chromosomes were identified. One amphidiploid contained a reciprocal translocation between wheat chromosome 4D and rye chromosome 1R. Non-reciprocal translocations between 2B and 3R, and between an unidentified wheat chromosome and 2R, were found independently in two amphidiploids. An additional plant had a translocation between wheat chromosomes 6B and 5A. All deletions involving rye chromosomes were noted in all 10 amphidiploids. Twelve of the 13 breakpoints in chromosomes involved in translocations and deletions occurred in heterochromatin. Amplification of heterochromatin bands on 2RL and 7RL chromosome arms also was observed in five plants. These results indicate a high degree of chromosome structural change induced by tissue culture. Therefore, tissue culture may be a useful tool in alien gene introgression and manipulation of heterochromatin in triticale improvement.Contribution No. 84-188-J, Kansas Agricultural Experiment Station, Kansas State University. Research was supported by the Science and Education Administration of the U.S. Department of Agriculture under Grant No. 59-2201-1-1-639-0 from Competitive Research Grants Office to R.G.S.  相似文献   

9.
A total of 130 stable, two-break reciprocal translocations were scored in G-banded karyotypes prepared from 375 metaphase spreads from a strain of human diploid fibroblasts irradiated with 400 or 600 rads and analyzed 1-20 mean population doublings later. The chromosomal location of each of the 260 breakpoints was mapped. The sites of 121 chromosomal breaks and deletions in the first postirradiation mitosis were also scored. Unlike the random distribution of these latter events, the translocation breakpoints showed not only a nonrandom distribution among chromosomes but also the existence of specific sites within chromosomes that were more frequently involved in translocations. The most notable finding was a marked excess of translocations involving the short arm of chromosome 1, in particular, band 1p22. The specific types of translocations were random, although the breakpoints were not. Eight of the 12 most frequently involved chromosomal sites were regions in which fragile sites have been mapped in human lymphocytes.  相似文献   

10.
We used in situ hybridization of chromosome specific DNA probes (“chromosome painting”) of all human chromosomes to establish homologies between the human and the white and black colobus (Colobus guereza 2n = 44). The 24 human paints gave 31 signals on the autosomes (haploid male chromosome set). Robertsonian translocations between chromosomes homologus to human 14 and 15, 21 and 22, form colobine chromosomes 6 and 16, respectively. Reciprocal translocations were found between human chromosomes 1 and 10, 1 and 17, as well as 3 and 19. The alternating hybridization signals between human 3 and 19 on Colobus chromosome 12 show that in this case a reciprocal translocation was followed by a pericentric inversion. The hybridization data show that in spite of the same diploid number and similar Fundamental Numbers, the black and white colobine monkey differs from Presbytis cristata, an Asian colobine, by 6 reciprocal translocations. Comparisons with the hybridization patterns in other primates show that some Asian colobines have a more derived karyotype with respect to African colobines, macaques, great apes, and humans. Chromosome painting also clearly shows that similarities in diploid number and chromosome morphology both between colobines and gibbons are due to convergence. Am. J. Primatol. 42:289–298, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories.  相似文献   

12.
Summary Four of 1,240 cultivated barley lines collected from different regions of the world and 3 of 120 lines of wild barley, Hordeum spontaneum C. Koch, carry spontaneous reciprocal translocations. Break-point positions and rearrangements in the interchanged chromosomes have been examined by both test crosses and Giemsa banding techniques. The four translocation lines in cultivated barley were all of Ethiopian origin and have the same translocation involving chromosomes 2 and 4. The breakpoints are at the centromeres of both chromosomes, resulting in interchanged chromosomes 2S+4S and 2L+4L (S=short arm, L=long arm). A wild barley line, Spont.II, also has translocated chromosomes 2 and 4 which are broken at the centromeres. The resultant chromosomes are, however, 2S+4L and 2L+4S. Another wild barley line, Spont.S-4, has interchanged chromosomes with breakpoints in the short arm of chromosome 3 and the long arm of chromosome 7. In addition, this line has a paracentric inversion in the short arm of chromosome 7 that includes a part of nucleolar constriction, resulting in two tandemly arranged nucleolar constrictions. The third wild barley line, Spont.S-7, has interchanged chromosomes with breakpoints in the long arms of both chromosomes 3 and 6. The translocated chromosome 3 is metacentric and the translocated chromosome 6 has a long arm similar in length to the long arm of chromosome 7.  相似文献   

13.
Chromosome 1 long arm abnormalities (translocations, partial of complete trisomies) are non-randomly but inconstantly associated with specific translocations involving chromosomes 8, and 2, 14 or 22 in Burkitt's lymphomas and leukemias. All nine Burkitt's lymphoma cell lines not associated with Epstein-Barr virus (EBV) were shown to exhibit a chromosome 1 long arm abnormality and were present in only 3 out of 18 EBV positive cell lines. Bands 1q23 - 1q24 were involved in EBV-negative cell lines. It was thus hypothesised that genetic information resembling that included in viral genome exists on chromosome 1 long arm. This hypothesis implies new possible aspects of relationship between Burkitt's cell line proliferation and EBV.  相似文献   

14.
含有抗白粉病基因的黑麦染色体小片段向小麦的转移   总被引:7,自引:0,他引:7  
符书兰  唐宗祥  张怀琼  杨足君  任正隆 《遗传》2006,28(11):1396-1400
利用感白粉病的小麦品种绵阳11的纯系和黑麦自交系R12杂交, 在其单体附加系自交后代的BC1F5株系中选择小麦-黑麦异源易位系。根据已报道的黑麦特异重复序列pSc20H设计了一对特异引物, 用PCR方法鉴定了300个单体附加系的自交BC1F5株系,发现其中70个株系含有黑麦染色体成分。一个来源于6R单体附加系的小麦株系96Ⅱ691-830-98表现了对白粉病的高度抗性, PCR方法鉴定证明其含有黑麦染色体成分。对该株系作进一步的基因组原位杂交(GISH)鉴定, 证明它的一对染色体的端部含有黑麦染色体的小片段。这一结果指出, 含有抗白粉病基因的黑麦染色体6R小片段被引入了小麦。研究表明利用单体附加诱导染色体小片段易位是一种有效的方法。利用PCR和GISH原位杂交相结合的方法可提高检测外源染色体小片段的准确性和选择效率。  相似文献   

15.
小熊猫染色体异染色质的显示   总被引:4,自引:0,他引:4  
以培养的小熊猫外周淋巴细胞为实验材料,结合C-显带技术及CMA3/DA/DAPI三竽荧光杂色的方法,对小熊猫的染色体组型、C-带带型及CMA3/DA/DAPI荧光带带型进行了研究,发现:(1)经C-显带技术处理,可在小熊猫染色体上呈现出一种极为独特的C-带带型。在多数染色体上可见到丰富的插入C-带及端粒C-带。而着丝区仅显示弱阳性C-带;(2)除着丝粒区外,CMA3诱导的大多数强荧光带纹与C-阳性  相似文献   

16.
A physical map including 40 translocation breakpoints has been constructed in rye by means of synaptonemal complex (SC) analysis of well-paired pachytene quadrivalents. The chromosome arms involved in such translocations were previously identified either from mitotic C-banding analysis or from the meiotic configurations observed in the progenies of crosses with a rye line having multiple chromosome rearrangements. The synaptonemal complexes formed by some translocation homozygotes were also analyzed, the relative pachytene SC length of their translocated chromosomes being compared to that observed in the corresponding translocation heterozygotes. In the translocations in which the position of the breakpoint could be well defined from mitotic C-banding analysis, a good correspondence between the relative position of the point showing partner exchange in the pachytene quadrivalents and the actual location of the breakpoint was established. It is concluded that the mapping of translocation breakpoints by SC analysis of pachytene quadrivalents provides a more accurate estimate of the position of the breakpoints than that obtained from mitotic C-banding analysis, due to the lack of evenly-distributed interstitial C-bands in most rye chromosomes. The distribution of the breakpoints along the chromosomes in relation to their spontaneous or induced origin is also discussed.  相似文献   

17.
Repeated early embryonic loss (REEL) represents a considerable economic loss to the horse industry. Mares that experience REEL may be overlooked as potential carriers of a chromosome abnormality. Here we report three different autosomal translocations in Thoroughbred mares presented for chromosome analysis because of REEL. The karyotypes were 64,XX,t(1;21), 64,XX,t(16;22), and 64,XX,t(4;13), respectively. In order to confirm the chromosomes involved in the translocations, to map the breakpoints, and to determine if the translocations were reciprocal, genes surrounding the breakpoints were identified using existing maps and from the newly assembled horse genome sequence. Bacterial artificial chromosomes containing the genes of interest were identified and mapped to the translocation chromosomes by fluorescence in situ hybridization (FISH). FISH confirmed that the t(16;22) and t(4;13) translocations were reciprocal, while the t(1;21) was not. The breakpoints on horse chromosomes 1 and 16 appear to be the same or near breakpoints previously identified in translocations. These breakpoints are at the fusion boundary of human chromosomes 10 and 15 on horse chromosome 1 and at human chromosome 3p and 3q on horse chromosome 16. These sites may represent ancient breakpoints reused during equid evolution. Overall, chromosome abnormalities may have a greater influence on mare fertility than previously known. Thus, it is important to karyotype subfertile mares exhibiting REEL.  相似文献   

18.
Maize tertiary trisomic stocks derived from B-A translocations   总被引:2,自引:0,他引:2  
Reciprocal translocations between supernumerary B chromosomes and the basic complement of A chromosomes in maize have resulted in a powerful set of tools to manipulate the dosage of chromosomal segments. From 15 B-A reciprocal translocation stocks that have the B-A chromosome genetically marked we have developed tertiary trisomic stocks. Tertiary trisomics are 2n + 1 aneuploids where the extra chromosome is a translocation element, in this case a B-A chromosome. Whereas B-A translocations produce aneuploidy in the sperm, the tertiary trisomic plant efficiently transmits hyperploid gametes maternally. Because the B-A tertiary trisomic stocks and the B-A translocation stocks from which they were derived are introgressed into the W22 inbred line, the effects of maternally and paternally transmitted trisomic B-A chromosomes can be compared. Data are presented on both the male and female transmission rates of the B-A chromosomes in the tertiary trisomic stocks.  相似文献   

19.
Spontaneous telomere loss has been proposed as an important mechanism for initiating the chromosome instability commonly found in cancer cells. We have previously shown that spontaneous telomere loss in a human cancer cell line initiates breakage/fusion/bridge (B/F/B) cycles that continue for many cell generations, resulting in DNA amplification and translocations on the chromosome that lost its telomere. We have now extended these studies to determine the effect of the loss of a single telomere on the stability of other chromosomes. Our study showed that telomere acquisition during B/F/B cycles occurred mainly through translocations involving either the nonreciprocal transfer or duplication of the arms of other chromosomes. Telomere acquisition also occurred through small duplications involving the subtelomeric region of the other end of the same chromosome. Although all of these mechanisms stabilized the chromosome that lost its telomere, they differed in their consequences for the stability of the genome as a whole. Telomere acquisition involving nonreciprocal translocations resulted in the loss of a telomere on the donor chromosome, which consequently underwent additional translocations, isochromosome formation, or complete loss. In contrast, telomere acquisition involving duplications stabilized the genome, although the large duplications created substantial allelic imbalances. Thus, the loss of a single telomere can generate a variety of chromosome alterations commonly associated with human cancer, not only on a chromosome that loses its telomere but also on other chromosomes. Factors promoting telomere loss are therefore likely to have an important role in generating the karyotype evolution associated with human cancer.  相似文献   

20.
小麦基因组中外源染色体片段的检测和小麦基因分子标记的建立@石锐$哈尔滨师范大学生物系!150080小麦;;外源染色体;;分子标记  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号