首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
哺乳动物核移植技术是一种可以获得基因组遗传信息完全相同的后代的生物技术。猪体细胞核移植技术包括以下几个环节:卵母细胞的体外成熟、供体细胞的分离和处理、体细胞的核转移、重构胚胎的人工激活、胚胎体外培养和胚胎移植。由于该技术在最近几年的迅速发展,很多实验室已通过该技术成功获得了克隆猪后代。核移植克隆猪技术的出现为生产转基因猪提供了一种有效的方法,并且是目前生产基因打靶猪的惟一方法。至今利用克隆猪技术已经成功获得了一系列的转基因猪和基因敲除猪。以核移植技术产生基因修饰猪目前正处于从基础研究走向应用的过渡阶段。尽管猪体细胞核移植克隆的效率(出生克隆猪数占所用卵数的比例)还不高,但是由于通过该技术能够对猪基因组进行特定的修饰,确保生产的克隆动物100%为转基因动物,从而大大提高了转基因猪的制作效率,可以预料猪核移植技术将会对医药业和农业产生重大的影响。  相似文献   

2.
Nuclear transfer (NT) is a procedure by which genetically identical individuals can be created. The technology of pig somatic NT, including in vitro maturation of oocytes, isolation and treatment of donor cells, artificial activation of reconstructed oocytes, embryo culture and embryo transfer, has been intensively studied in recent years, resulting in birth of cloned pigs in many labs. While it provides an efficient method for producing transgenic pigs, more importantly, it is the only way to produce gene-targeted pigs. So far pig cloning has been successfully used to produce transgenic pigs expressing the green fluorescence protein, expand transgenic pig groups and create gene targeted pigs which are deficient of alpha-1,3-galactosyltransferase. The production of pigs with genetic modification by NT is now in the transition from investigation to practical use. Although the efficiency of somatic cell NT in pig, when measured as development to term as a proportion of oocytes used, is not high, it is anticipated that the ability of making specific modifications to the swine genome will result in this technology having a large impact not only on medicine but also on agriculture.  相似文献   

3.
The present paper describes production of cloned pigs from fibroblast cells of transgenic pigs expressing human decay accelerating factor (DAF, CD55) and N-acetylglucosaminyltransferase III (GnT-III) that remodels sugar-chain biosynthesis. Two nuclear transfer protocols were used: a two-step activation (TA) method and a delayed activation (DA) method. Enucleated in vitro-matured oocytes and donor cells were electrically fused in a calcium-containing medium by TA method or in a calcium-free medium by DA method, followed by electrical activation 1-1.5 h later, respectively. In vitro blastocyst formation rates of nuclear transferred embryos reconstructed by TA and DA method were 8% and 14%, respectively. As a result of embryo transfer of the reconstructed embryos made by each method into recipient pigs, both gave rise to cloned piglets. These cloned pigs expressed transgene as much as their nuclear donor cells. In conclusions, (1) pig cloning can be carried out by TA or DA nuclear transfer methods, (2) expression of transgenes can be maintained to cloned pigs from the nuclear donor cells derived from transgenic animals.  相似文献   

4.
Development of assisted reproductive technologies in horses has been relatively slow compared to other domestic species, namely ruminants and pigs. The scarce availability of abattoir ovaries and the lack of interest from horse breeders and breed associations have been the main reasons for this delay. Progressively though, the technology of oocyte maturation in vitro has been established followed by the application of ICSI to achieve fertilization in vitro. Embryo culture was initially performed in vivo, in the mare oviduct or in the surrogate sheep oviduct, to achieve the highest embryo development, in the range of 18-36% of the fertilised oocytes. Subsequently, the parallel improvement of in vitro oocyte maturation conditions and embryo culture media has permitted high rates of embryo development from in vitro matured and in vitro cultured ICSI embryos, ranging from 5 to 10% in the early studies to up to 38% in the latest ones. From 2003, with the birth of the first cloned equids, the technology of somatic cell nuclear transfer has also become established due to improvement of the basic steps of embryo production in vitro, including cryopreservation. Pregnancy and foaling rates are still estimated based on a small number of in vitro produced equine embryos transferred to recipients. The largest set of data on non-surgical embryo transfer of in vitro produced embryos, from ICSI of both abattoir and in vitro-matured Ovum Pick Up (OPU) oocytes, and from somatic cell nuclear transfer, has been obtained in our laboratory. The data demonstrate that equine embryos produced by OPU and then cryopreserved can achieve up to 69% pregnancy rate with a foaling rate of 83%. These percentages are reduced to 11 and 23%, respectively, for cloned embryos. In conclusion, extensive evidence exists that in vitro matured equine oocytes can efficiently develop into viable embryos and offspring.  相似文献   

5.
本文介绍了世界上和中国采用细胞核移植技术克隆动物的研究历史。综述了细胞核移植的程序、方法和影响因素,包括受体卵母细胞的去核、供体细胞核的制备、核移植、激活、受体细胞与供体细胞的融合、重组胚的体内和体外培养以及胚胎移植产生克隆动物。对克隆动物研究和应用前景进行了讨论。近期的研究结果表明,多代克隆可产生大量遗传性相同的动物,不久的将来克隆技术在商业上的应用将成为现实。  相似文献   

6.
Genetically engineered pigs serve as excellent biomedical and agricultural models. To date, the most reliable way to generate genetically engineered pigs is via somatic cell nuclear transfer (SCNT), however, the efficiency of cloning in pigs is low (1–3%). Somatic cells such as fibroblasts frequently used in nuclear transfer utilize the tricarboxylic acid cycle and mitochondrial oxidative phosphorylation for efficient energy production. The metabolism of somatic cells contrasts with cells within the early embryo, which predominately use glycolysis. We hypothesized that fibroblast cells could become blastomere‐like if mitochondrial oxidative phosphorylation was inhibited by hypoxia and that this would result in improved in vitro embryonic development after SCNT. In a previous study, we demonstrated that fibroblasts cultured under hypoxic conditions had changes in gene expression consistent with increased glycolytic/gluconeogenic metabolism. The goal of this pilot study was to determine if subsequent in vitro embryo development is impacted by cloning porcine embryonic fibroblasts cultured in hypoxia. Here we demonstrate that in vitro measures such as early cleavage, blastocyst development, and blastocyst cell number are improved (4.4%, 5.5%, and 17.6 cells, respectively) when donor cells are cultured in hypoxia before nuclear transfer. Survival probability was increased in clones from hypoxic cultured donors compared to controls (8.5 vs. 4.0 ± 0.2). These results suggest that the clones from donor cells cultured in hypoxia are more developmentally competent and this may be due to improved nuclear reprogramming during somatic cell nuclear transfer.  相似文献   

7.
The key research areas of the Department are: in vitro production of embryos, embryo cryopreservation, animal transgenesis, cloning, cytometric semen sexing and evaluation. Research has been focused on the in vitro production of animal embryos, including the development of complex methods for oocyte maturation, fertilization and embryo culture. Moreover, experiments on long-term culturing of late preantral and early antral bovine ovarian follicles have been developed. Studies on the cloning of genetically modified pigs with "humanized" immunological systems have been undertaken. A cloned goat was produced from oocytes reconstructed with adult dermal fibroblast cells. The novel technique of rabbit chimeric cloning for the production of transgenic animals was applied; additionally, the recipient-donor-cell relationship in the preimplantation developmental competences of feline nuclear transfer embryos has been studied. Regarding transgenic animal projects, gene constructs containing growth hormone genes connected to the mMt promoter were used. Modifications of milk composition gene constructs with tissue-specific promoters were performed. Moreover, pigs for xenotransplantation and animal models of human vascular diseases have been produced. Over the last 15 years, our flow cytometry research group has focused its work on new methods for sperm quality assessment and sex regulation. In the 1970s, our team initiated studies on embryo cryopreservation. As a result of vitrification experiments, the world's first rabbits and sheep produced via the transfer of vitrified embryos were born.  相似文献   

8.
Vajta G  Callesen H 《Theriogenology》2012,77(7):1263-1274
Handmade cloning (HMC) is now an established procedure used in several species for somatic cell nuclear transfer, but only applied in two related laboratories for pigs. The aim of this review is to facilitate widespread application by summarizing the process of establishment and explaining the background of the incorporated special approaches. Optimized steps of traditional cloning in pigs (in vitro maturation, activation, embryo culture) were merged with those of the micromanipulation-free HMC that has been modified according to the specific needs of sensitive porcine oocytes (partial zona digestion before enucleation, two-step zona-free fusion with the somatic cell; initiation of activation with the second fusion). The zona-free approach required embryo culture to the blastocyst stage before surgical transfer of embryos to the uterine horns of recipient sows in the proper phase of an unstimulated cycle. Eventually a competitive, inexpensive and reliable alternative to traditional porcine nuclear transfer cloning techniques evolved that is also suitable to produce transgenic offspring containing various genetic modifications to establish models for several human diseases with genetic background. Further improvements and involvement of additional techniques to increase the overall efficiency and facilitate practical applications are expected in the foreseeable future.  相似文献   

9.
Somatic cell cloning without micromanipulators   总被引:1,自引:0,他引:1  
Until now, micromanipulators have been regarded as indispensable for somatic cell nuclear transfer. This paper describes an improved zona-free nuclear transfer procedure with manual bisection of oocytes, selection of cytoplasts by Hoechst staining, and two-step fusion of somatic cells from primary granulosa cell cultures with two cytoplasts. Blastocyst rates in the three systems tested for zona-free embryo culture were 0%, 18%, and 36% for microdrops, well of the wells (WOW system), and microcapillaries (GO system), respectively. This simple, rapid, and inexpensive procedure may become a useful alternative to the existing techniques for somatic cell nuclear transfer for large-scale application of the technology.  相似文献   

10.
Many different cell types have been used to generate nuclear transfer embryos and fetuses. However, little is known about the potential of fibroblasts derived from a nuclear transfer fetus as donor cells for nuclear transfer. The ability of cloned fetuses or animals to be cloned themselves is of great interest in determining whether successive generations of clones remain normal or accumulate genetic or phenotypic abnormalities. We generated a bovine fibroblast cell line from a cloned fetus, that continued to divide beyond 120 days (94 doublings,18 passages) in continuous culture. As long-term survival of cells in culture is a desirable characteristic for use in transgenic cell production, passage 2 and 18 cells were compared as donor cells for nuclear transfer (NT). When cells from passage 2 (2 weeks in culture) and passage 18 (4 months in culture) were used for nuclear transfer, there was no significant difference in development rate to blastocyst (35.4 versus 44.6%, P=0.07). A greater proportion of late passage cells were in G0/G1 whether under serum-fed (64 versus 56%, P<0.01) or serum-starved (95 versus 88%, P<0.01) culture conditions. Following embryo transfer, equivalent day 30 pregnancy rates were observed for each group (P 2: 2/19 versus P 18: 2/13). A slightly retarded fetus was surgically removed at day 56 and the remaining three fetuses died in utero by day 60 of gestation. Our results show that fibroblast cells derived from regenerated cloned fetuses are capable of both in vitro and in vivo development. The longevity of this regenerated cell line would allow more time for genetic manipulations and then to identify stable transfected cells prior to their use as NT donor cells. Although no live fetuses were produced in this study the results provide encouraging data to show that a cloned fetus can itself be recloned to produce another identical cloned fetus. Further studies on this and other recloned fetuses are necessary to determine whether the failure to produce live offspring was a result of inadequate sample size or due to the cell type selected.  相似文献   

11.
The developmental competence of domestic pig oocytes that were transferred to somatic cell nuclei of miniature pig was examined. A co-culture system of oocytes with follicle shells was used for the maturation of domestic pig oocytes in vitro. Co-cultured oocytes progressed to the metaphase II stage of meiosis more quickly and more synchronously than non co-cultured oocytes. Oocytes were enucleated and fused with fibroblast cells of Potbelly miniature pig at 48 h of maturation. The blastocyst formation rate of nuclear transfer (NT) embryos using cocultured oocytes (24%) was significantly higher (p < 0.05) than that of non-co-cultured oocytes (13%). Cleaved embryos at 48 h after nuclear transfer using co-cultured oocytes were transferred to the oviducts of 14 G?ttingen miniature pigs and four Meishan pigs. Estrus of all G?ttingens returned at around 20-31 days of pregnancy. Two of the four Meishans became pregnant. Three and two cloned piglets were born after modest number of embryo transfer (15 and 29 embryos transferred), respectively. These results indicated that oocytes co-cultured with follicle shells have a high developmental competence after nuclear transfer and result in full-term development after embryo transfer.  相似文献   

12.
Progress in reproductive biotechnology in swine.   总被引:4,自引:0,他引:4  
H Niemann  D Rath 《Theriogenology》2001,56(8):1291-1304
This article summarizes recent progress in reproductive biotechnology in swine with special reference to in vitro production of embryos, generation of identical multiples, and transgenic pigs useful for xenotransplantation. In vitro production (in vitro maturation, in vitro fertilization, and in vitro culture) of viable porcine embryos is possible, although with much lower success rates than in cattle. The main problems are insufficient cytoplasmic maturation of porcine oocytes, a high proportion of polyspermic fertilization and a low proportion of blastocysts that, in addition, are characterized by a low number of cells, hampering their development in vivo upon transfer to recipients. Microsurgical bisection of morula and blastocyst stage embryos leads to a 2 to 3% monozygotic twinning rate of the transferred demiembryos, which is similar to that in rabbits and mice but considerably lower than in ruminants. It was found that with decreasing quality an increasing proportion of demi-embryos did not possess an inner cell mass. Porcine individual blastomeres derived from 4- and 8-cell embryos can be cultured in defined medium to the blastocyst stage. Leukemia inhibitory factor has been shown to be effective at defined embryonic stages and supports the formation of the inner cell mass in cultured isolated blastomeres in a concentration-dependent manner. For maintaining pregnancies with micromanipulated porcine embryos, it is not necessary to transfer extraordinarily high numbers of embryos. Porcine nuclear transfer is still struggling from the inefficiency of producing normally functioning blastocysts. Blastomeres, blastocyst-derived cells, fibroblasts and granulosa cells have been employed as donor cells in porcine nuclear transfer and have yielded blastocysts. Recently, the generation of the first piglets from somatic cell nuclear transfer has been achieved. DNA-microinjection into pronuclei of porcine zygotes has reliably resulted in the generation of transgenic pigs, which have special importance for the production of valuable pharmaceutical proteins in milk and xenotransplantation. It has been demonstrated that by expression of human complement regulatory proteins in transgenic pigs the hyperacute rejection response occurring after xenotransplantation can be overcome in a clinically relevant manner. Although biotechnological procedures in swine have recently undergone tremendous progress, the development is still lagging behind that in cattle and sheep. With regard to genetic engineering, considerable progress will originate from the possibility of employing homologous recombination in somatic cell lines and their subsequent use in nuclear transfer. In combination with the increasing knowledge in gene sequences this will allow in the foreseeable future widespread use in the pig industry either for agricultural or biomedical purposes.  相似文献   

13.
Electrofusion is a valuable technique for the nuclear transfer procedure. An enucleated oocyte is electrofused with a blastomere to create a nuclear transfer embryo. The present study constructed isofusion contours after the electrofusion of identical coupled cells that characterized all the bovine embryonic cell types used in nuclear transfer. The intersection of isofusion contours for enucleated oocytes and blastomeres provided the parameters for electrofusion during nuclear transfer. Blastomeres isolated from in vitro produced embryos 3–6 days after (in vitro fertilization) were electrofused with oocytes enucleated by centrifugation (85, 87, 89, and 73% electrofusion, respectively). The cleavage (46, 40, 37, and 28%, respectively) of the nuclear transfer embryos produced a trend that decreased as the age of the blastomeres increased. The isofusion contours provided information about the interaction between different cell types in an electric field, and gave precise electrofusion parameters for a range of bovine embryonic cell types used in nuclear transfer. © 1996 Wiley-Liss, Inc.  相似文献   

14.
15.
The aim of the present study was to determine whether porcine preadipocytes can be efficient donor cells for somatic cell nuclear transfer (SCNT) in pigs. Primary culture of porcine preadipocytes was established by de-differentiating mature fat cells taken from an adult pig. The cell cycle of the preadipocytes could be synchronized by serum starvation for 1 day, with a higher efficiency than control fetal fibroblasts. Incidence of premature chromosome condensation following nuclear transfer (NT) of preadipocytes was as high as that observed after NT with fetal fibroblasts. In vitro developmental rate of the NT embryos reconstructed with preadipocyte was equivalent to that of the fetal fibroblast derived embryos. Transfer of 732 NT embryos with preadipocytes to five recipients gave rise to five cloned piglets. These data demonstrate that preadipocyites collected from an adult pig are promising nuclear donor cells for pig cloning.  相似文献   

16.
Puromycin N-acetyl transferase gene (pac), of which the gene product catalyzes antibiotic puromycin (an effective inhibitor of protein synthesis), has been widely used as a dominant selection marker in embryonic stem (ES) cell-mediated transgenesis. The present study is the first to report on the usefulness of puromycin for production of enhanced green fluorescent protein (EGFP) transgenic piglets after somatic cell cloning and embryo transfer. Somatic cells isolated from porcine fetuses at 73 days of gestation were immediately electroporated with a transgene (pCAG-EGFPac) carrying both EGFP cDNA and pac. This procedure aims to avoid aging effects thought to be generated during cell culture. The recombinant cells were selected with puromycin at a low concentration (2 microg/ml), cultured for 7 days, and then screened for EGFP expression before somatic cell cloning. The manipulated embryos were transplanted into the oviducts of 14 foster mother sows. Four of the foster sows became pregnant and nine piglets were delivered. Of the nine piglets, eight died shortly after birth and one grew healthy after weaning. Results indicate that puromycin can be used for the selection of recombinant cells from noncultured cells, and moreover, may confer the production of genetically engineered newborns via nuclear transfer techniques in pigs.  相似文献   

17.
Viability of equine embryos produced by oocyte maturation, intracytoplasmic sperm injection and embryo culture to the blastocyst stage in vitro was evaluated after transfer of embryos to recipient mares. No pregnancies were produced after transfer of five blastocysts that had been cultured in G media. Transfer of 10 blastocysts cultured in modified DMEM/F-12 medium produced five pregnancies and three live foals; the two lost pregnancies developed only trophoblast (based on transrectal ultrasonography). To evaluate the status of the inner cell mass, equine blastocysts produced in vivo and in vitro were assessed after differential staining. A discrete inner cell mass could not be appreciated in blastocysts of either source after staining; this was attributed to the presence of a network of cells within the trophoblastic vesicle. Because increased medium calcium concentrations have been reported to decrease the incidence of trophoblast-only pregnancy after transfer of equine nuclear transfer embryos, we investigated the effect of increased calcium concentrations during oocyte maturation or during embryo culture. Increasing calcium concentration of culture medium from 2 to 5.6mM during in vitro oocyte maturation did not affect maturation rate (75 and 68%, respectively) or blastocyst development after fertilization (23 and 27%). However, increasing calcium concentration (from 1.3 to 4.9 mM) of medium used for embryo culture significantly decreased blastocyst development (27% versus 13%, respectively) and adversely affected embryo morphology. More work is needed to optimize culture systems for in vitro production of equine embryos.  相似文献   

18.
Widespread application of somatic cell cloning has been hampered by biological and technical problems, which include complicated and time-consuming procedures requiring skilled labor. Recently, zona-free techniques have been published with limited or no requirement for micromanipulators. The purpose of the present work was to optimize certain steps of the micromanipulator-free (i.e., handmade) procedure, to analyze the morphology of the developing blastocysts, and to explain factors involved in the high efficiencies observed. Optimization of the procedure included selection of the appropriate medium for enucleation, orientation of pairs at fusion, timing of fusion, and culture conditions. As a result of these improved steps, in vitro efficiency as measured by blastocysts per reconstructed embryo and blastocysts per working hour was among the highest described so far. The cattle serum used in our experiments was superior to other protein sources for in vitro embryo development. One possible explanation of this effect is the considerable mitogenic activity of the cattle serum compared with that of commercially available fetal calf serum. Morphological analysis of blastocysts by inverted microscopy, inner cell mass-trophoblast differential staining, and transmission electron microscopy revealed high average quality. A high initial pregnancy rate was achieved after the transfer of single blastocysts derived by aggregation of two nuclear transfer embryos into recipients. The improved handmade somatic cell nuclear transfer method may become a useful technology as a simple, inexpensive, and efficient alternative to traditional somatic cell nuclear transfer.  相似文献   

19.
J. Hahn 《Theriogenology》1984,21(1):45-59
Significant data from experiments with oocytes and embryos of mice and rabbits involving fertilization in vitro, culture, and transfer are presented and evaluated with respect to their relevance to commercial embryo transfer. Examples of in vitro fertilization studies include experiments on maturation and aging of oocytes, superovulation and evaluation of oocytes, behavior of spermatozoa within the ooplasm, and nuclear manipulation. Studies of culture systems, growth and differentiation processes, and the influence of drugs on such growth are described. Finally, significant problems in achieving optimal embryo transfer results are addressed.  相似文献   

20.
Cloned pigs were produced from cultured skin fibroblasts derived from a H-transferase transgenic boar. One 90 day fetus and two healthy piglets resulted from nuclear transfer by fusion of cultured fibroblasts with enucleated oocytes. The cells used in these studies were subjected to an extensive culture time, freezing and thawing, and clonal expansion from single cells prior to nuclear transfer. PCR and FACS analysis determined that the cloned offspring contained and expressed the H-transferase transgene. Microsatellite analysis confirmed that the clones were genetically identical to the boar. The cell culture and nuclear transfer procedures described here will be useful for applications requiring multiple genetic manipulations in the same animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号