首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We grew velvetleaf (Abutilon theophrasti Medic.) and cotton (Gossypium hirsutum L. var. Stoneville 213) at three irradiances and determined the photosynthetic responses of single leaves to a range of six irradiances from 90 to 2000 μeinsteins m−2sec−1. In air containing 21% O2, velvetleaf and cotton grown at 750 μeinsteins m−2sec−1 had maximum photosynthetic rates of 18.4 and 21.9 mg of CO2 dm−2hr−1, respectively. Maximum rates for leaves grown at 320 and 90 μeinsteins m−2sec−1 were 15.3 and 10.3 mg of CO2 dm−2hr−1 in velvetleaf and 12 and 6.7 mg of CO2 dm−2hr−1 in cotton, respectively. In 1 O2, maximum photosynthetic rates were 1.5 to 2.3 times the rates in air containing 21% O2, and plants grown at medium and high irradiance did not differ in rate. In both species, stomatal conductance was not significantly affected by growth irradiance. The differences in maximum photosynthetic rates were associated with differences in mesophyll conductance. Mesophyll conductance increased with growth irradiance and correlated positively with mesophyll thickness or volume per unit leaf area, chlorophyll content per unit area, and photosynthetic unit density per unit area. Thus, quantitative changes in the photosynthetic apparatus help account for photosynthetic adaptation to irradiance in both species. Net assimilation rates calculated for whole plants by mathematical growth analysis were closely correlated with single-leaf photosynthetic rates.  相似文献   

2.
Srivastava A  Zeiger E 《Plant physiology》1992,100(3):1562-1566
Chlorophyll a fluorescence transients from isolated Vicia faba guard cell chloroplasts were used to probe the response of these organelles to light quality. Guard cell chloroplasts were isolated from protoplasts by passing them through a 10-μm nylon net. Intact chloroplasts were purified on a Percoll gradient. Chlorophyll a fluorescence transients induced by actinic red or blue light were measured with a fluorometer equipped with a measuring beam. Actinic red light induced a monophasic quenching, and transients induced by blue light showed biphasic kinetics having a slow and a fast component. The difference between the red and blue light-induced transients could be observed over a range of fluence rates tested (200-800 μmol m−2 s−1). The threshold fluence rate of blue light for the induction of the fast component of quenching was 200 μmol m−2 s−1, but in the presence of saturating red light, fluence rates as low as 25 μmol m−2 s−1 induced the fast quenching. These results indicate that guard cell chloroplasts have a specific response to blue light.  相似文献   

3.
Irradiance data software developed by the NREL Solar Radiation Laboratory (Simple Model of Atmospheric Radiative Transfer of Sunshine, SMARTS) has been used for modelling photosynthesis. Spectra and total irradiance were expressed in terms of quanta [mol m−2 s−1, photosynthetic photon flux density, PPFD (400–700 nm)]. Using the SMARTS software it is possible to (1) calculate the solar spectrum for a planar surface for any given solar elevation angle, allowing for the attenuating effects of the atmosphere on extraterrestrial irradiance at each wavelength in the 400–700 nm range and for the thickness of atmosphere the light must pass through during the course of a day, (2) calculate PPFD vs. solar time for any latitude and date and (3) estimate total daily irradiance for any latitude and date and hence calculate the total photon irradiance for a whole year or for a growing season. Models of photosynthetic activity vs. PPFD are discussed. Gross photosynthesis (P g) vs. photosynthetic photon flux density (PPFD) (P g vs. I) characteristics of single leaves compared to that of a canopy of leaves are different. It is shown that that the optimum irradiance for a leaf (Iopt) is the half-saturation irradiance for a battery of leaves in series. A C3 plant, with leaves having an optimum photosynthetic rate at 700 μmol m−2 s−1 PPFD, was used as a realistic worked example. The model gives good estimates of gross photosynthesis (P g) for a given date and latitude. Seasonal and annual estimates of P g can be made. Taking cloudiness into account, the model predicts maximum P g rates of about 10 g(C) m−2 d−1, which is close to the maximum reported P g experimental measurements.  相似文献   

4.
Past studies of the effects of varying levels of photosynthetic photon flux density (PPFD) on the morphology and physiology of the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides L. (Bromeliaceae) have resulted in two important findings: (1) CAM, measured as integrated nocturnal CO2 uptake or as nocturnal increases in tissue acidity, saturates at relatively low PPFD, and (2) this plant does not acclimate to different PPFD levels, these findings require substantiation using photosynthetic responses immediately attributable to different PPFD levels, e.g., O2 evolution, as opposed to the delayed, nocturnal responses (CO2 uptake and acid accumulation). In the present study, instantaneous responses of O2 evolution to PPFD level were measured using plants grown eight weeks at three PPFD (20–45, 200–350, and 750–800 mol m-2s-1) in a growth chamber, and using shoots taken from the exposed upper portions (maximum PPFD of 800 mol m-2s-1) and shaded lower portions (maximum PPFD of 140 mol m-2s-1) of plants grown ten years in a greenhouse. In addition, nocturnal increases in acidity were measured in the growth chamber plants. Regardless of the PPFD levels during growth, O2 evolution rates saturated around 500 mol m-2s-1. Furthermore, nocturnal increases in tissue acidity saturated at much lower PPFD. Thus, previous results were confirmed: photosynthesis saturated at low PPFD, and this epiphyte does not acclimate to different levels of PPFD.Abbreviations ANOVA analysis of variance - CAM Crassulacean acid metabolism - DW dry weight - PPFD photosynthetic photon flux density - SNK Student-Newman-Keuls (to whom all correspondence should be sent-present address and reprint requests);  相似文献   

5.
Husen  Jia  Dequan  Li 《Photosynthetica》2002,40(1):139-144
The responses to irradiance of photosynthetic CO2 assimilation and photosystem 2 (PS2) electron transport were simultaneously studied by gas exchange and chlorophyll (Chl) fluorescence measurement in two-year-old apple tree leaves (Malus pumila Mill. cv. Tengmu No.1/Malus hupehensis Rehd). Net photosynthetic rate (P N) was saturated at photosynthetic photon flux density (PPFD) 600-1 100 (mol m-2 s-1, while the PS2 non-cyclic electron transport (P-rate) showed a maximum at PPFD 800 mol m-2 s-1. With PPFD increasing, either leaf potential photosynthetic CO2 assimilation activity (Fd/Fs) and PS2 maximal photochemical activity (Fv/Fm) decreased or the ratio of the inactive PS2 reaction centres (RC) [(Fi – Fo)/(Fm – Fo)] and the slow relaxing non-photochemical Chl fluorescence quenching (qs) increased from PPFD 1 200 mol m-2 s-1, but cyclic electron transport around photosystem 1 (RFp), irradiance induced PS2 RC closure [(Fs – Fo)/Fm – Fo)], and the fast and medium relaxing non-photochemical Chl fluorescence quenching (qf and qm) increased remarkably from PPFD 900 (mol m-2 s-1. Hence leaf photosynthesis of young apple leaves saturated at PPFD 800 mol m-2 s-1 and photoinhibition occurred above PPFD 900 mol m-2 s-1. During the photoinhibition at different irradiances, young apple tree leaves could dissipate excess photons mainly by energy quenching and state transition mechanisms at PPFD 900-1 100 mol m-2 s-1, but photosynthetic apparatus damage was unavoidable from PPFD 1 200 mol m-2 s-1. We propose that Chl fluorescence parameter P-rate is superior to the gas exchange parameter P N and the Chl fluorescence parameter Fv/Fm as a definition of saturation irradiance and photoinhibition of plant leaves.  相似文献   

6.
Acetylene reduction (AR) rates by cyanobacteria epiphytic on a moss at Marion Island (46°54′ S, 37°45′ E) increased from −5°C to a maximum at 25 to 27°C. Q10 values between 0 and 25°C were between 2.3 and 2.9, depending on photosynthetic photon flux density. AR rates declined sharply at temperatures above the optimum and were lower at 35°C than at 0°C. Photosynthetic photon flux density at low levels markedly influenced AR, and half of the maximum rate occurred at 84 μmol m−2 s−1, saturation occurring at ca. 1,000 μmol m−2 s−1. Higher photosynthetic photon flux density levels decreased AR rates. AR increased up to the highest sample moisture content investigated (3,405%), and the pH optimum was between 5.9 and 6.2. The addition of P, Co, and Mo, individually or together, depressed AR.  相似文献   

7.
Many cyanobacteria produce microcystins, hepatotoxic cyclic heptapeptides that can affect animals and humans. The effects of photosynthetically active radiation (PAR) on microcystin production by Microcystis strain PCC 7806 were studied in continuous cultures. Microcystis strain PCC 7806 was grown under PAR intensities between 10 and 403 μmol of photons m−2 s−1 on a light-dark rhythm of 12 h -12 h. The microcystin concentration per cell, per unit biovolume and protein, was estimated under steady-state and transient-state conditions and on a diurnal timescale. The cellular microcystin content varied between 34.5 and 81.4 fg cell−1 and was significantly positively correlated with growth rate under PAR-limited growth but not under PAR-saturated growth. Microcystin production and PAR showed a significant positive correlation under PAR-limited growth and a significant negative correlation under PAR-saturated growth. The microcystin concentration, as a ratio with respect to biovolume and protein, correlated neither with growth rate nor with PAR. Adaptation of microcystin production to a higher irradiance during transient states lasted for 5 days. During the period of illumination at a PAR of 10 and 40 μmol of photons m−2 s−1, the intracellular microcystin content increased to values 10 to 20% higher than those at the end of the dark period. Extracellular (dissolved) microcystin concentrations were 20 times higher at 40 μmol of photons m−2 s−1 than at 10 μmol of photons m−2 s−1 and did not change significantly during the light-dark cycles at both irradiances. In summary, our results showed a positive effect of PAR on microcystin production and content of Microcystis strain PCC 7806 up to the point where the maximum growth rate is reached, while at higher irradiances the microcystin production is inhibited.  相似文献   

8.
African violet (Saintpaulia ionantha H. Wendl) is one of the most easily and commonly tissue-cultured ornamental plants. Despite this, there are limited reports on photosynthetic capacity and its impact on the plant quality during acclimatization. Various growth, photosynthetic and biochemical parameters and activities of antioxidant enzymes and dehydrins of micropropagated plants were assessed under three light intensities (35, 70, and 100 µmol m?2 s?1 photosynthetic photon flux density – PPFD). Fresh and dry plant biomass, plant height, and leaf area were optimal with high irradiance (70–100 µmol m?2 s?1 PPFD). Chlorophyll and carotenoid contents and net photosynthesis were optimal in plants grown under 70 µmol m?2 s?1 PPFD. Stomatal resistance, malondialdehyde content, and Fv/Fm values were highest at low light irradiance (35 µmol m?2 s?1 PPFD). The activities of three antioxidant enzymes, superoxide dismutase, catalase, and glutathione peroxidase, increased as light irradiance increased, signaling that high light irradiance was an abiotic stress. The accumulation of 55, 33, and 25 kDa dehydrins was observed with all light treatments although the expression levels were highest at 35 µmol m?2 s?1 PPFD. Irradiance at 70 µmol m?2 s?1 PPFD was suitable for the acclimatization of African violet plants. Both low and high irradiance levels (35 and 100 µmol m?2 s?1 PPFD) induced the accumulation of antioxidants and dehydrins in plants which reveals enhanced stress levels and measures to counter it.  相似文献   

9.
Whole-plant diurnal C exchange analysis provided a noninvasive estimation of daily net C gain in transgenic tobacco (Nicotiana tabacum L.) plants deficient in leaf cytosolic pyruvate kinase (PKc−). PKc− plants cultivated under a low light intensity (100 μmol m−2 s−1) were previously shown to exhibit markedly reduced root growth, as well as delayed shoot and flower development when compared with plants having wild-type levels of PKc (PKc+). PKc− and PKc+ source leaves showed a similar net C gain, photosynthesis over a range of light intensities, and a capacity to export newly fixed 14CO2 during photosynthesis. However, during growth under low light the nighttime, export of previously fixed 14CO2 by fully expanded PKc− leaves was 40% lower, whereas concurrent respiratory 14CO2 evolution was 40% higher than that of PKc+ leaves. This provides a rationale for the reduced root growth of the PKc− plants grown at low irradiance. Leaf photosynthetic and export characteristics in PKc− and PKc+ plants raised in a greenhouse during winter months resembled those of plants grown in chambers at low irradiance. The data suggest that PKc in source leaves has a critical role in regulating nighttime respiration particularly when the available pool of photoassimilates for export and leaf respiratory processes are low.  相似文献   

10.
The ultraviolet action spectrum for stomatal opening in broad bean   总被引:3,自引:0,他引:3       下载免费PDF全文
The ultraviolet action spectrum for stomatal opening was measured using epidermal peels from leaves of broad bean (Vicia faba). The spectrum was calculated from hyperbolic fluence response curves using 11 wavelengths ranging from 275 to 459 nm. The action spectrum exhibits a major peak at approximately 280 nm and a minor peak at approximately 360 nm. The response at 280 nm is about three times greater than the response at 459 nm. Under the conditions utilized (i.e. the absence of saturating red light), stomatal opening saturated at extremely low fluence rates: <0.2 μmol m−2 s−1 at 280 nm, and approximately 1.0 μmol m−2 s−1 at 459 nm. The threshold for blue-light-induced stomatal opening was approximately 0.02 μmol m−2 s−1. In light-mixing experiments, the addition of 280 nm light to saturating 650 nm (red) light caused additional stomatal opening, which is indicative of separate photoreceptors. In contrast, adding 280 nm of light to saturating 459 nm (blue) light did not increase stomatal opening, suggesting that they both excite the same receptor. The results with white light were similar to those with blue light. We infer that ultraviolet light acts via the blue light photoreceptor rather than through photosynthesis. The additional absorbance peak at 360 nm suggests that the chromophore is either a flavin or a cis-carotenoid, both of which exhibit peaks in this region. It is proposed that the chromophore can be excited either directly by blue light or by energy transferred from the protein portion of the protein-pigment complex after it absorbs 280 nm light.  相似文献   

11.
Photoinhibition of photosystem II (PSII) electron transport and subsequent degradation of the D1 protein were studied in pumpkin (Cucurbita pepo L.) leaves developed under high (1000 μmol m−2 s−1) and low (80 μmol m−2 s−1) photon flux densities. The low-light leaves were more susceptible to high light. This difference was greatly diminished when illumination was performed in the presence of chloramphenicol, indicating that a poor capacity to repair photodamaged PSII centers is decisive in the susceptibility of low-light leaves to photoinhibition. In fact, the first phases of the repair cycle, degradation and removal of photodamaged D1 protein from the reaction center complex, occurred slowly in low-light leaves, whereas in high-light leaves the degradation of the D1 protein more readily followed photoinhibition of PSII electron transport. A modified form of the D1 protein, with slightly slower electrophoretic mobility than the original D1, accumulated in the appressed thylakoid membranes of low-light leaves during illumination and was subsequently degraded only slowly.  相似文献   

12.
Morphological and physiological measurements on individual leaves of Leucaena leucocephala seedlings were used to study acclimation to neutral shading. The light-saturated photosynthetic rate (Pn max) ranged from 19.6 to 6.5 mol CO2 m–2 s–1 as photosynthetic photon flux density (PPFD) during growth decreased from 27 to 1.6 mol m–2 s–1. Stomatal density varied from 144 mm–2 in plants grown in high PPFD to 84 mm–2 in plants grown in low PPFD. Average maximal stomatal conductance for H2O was 1.1 in plants grown in high PPFD and 0.3 for plants grown in low PPFD. Plants grown in low PPFD had a greater total chlorophyll content than plants grown in high PPFD (7.2 vs 2.9 mg g–1 on a unit fresh weight basis, and 4.3 vs 3.7 mg dm–2 on a unit leaf area basis). Leaf area was largest when plants were grown under the intermediate PPFDs. Leaf density thickness was largest when plants were grown under the largest PPFDs. It is concluded that L. leucocephala shows extensive ability to acclimate to neutral shade, and could be considered a facultative shade plant.Abbreviations the initial slope of the photosynthesis vs PPFD curve - Pn max the light-saturated photosynthetic rate - PPFD photosynthetic photon flux density  相似文献   

13.
Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17μmol.m−2.s−1) and clipping (2.06μmol.m−2.s−1) than under grazing (1.65μmol.m−2.s−1) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China.  相似文献   

14.
When supplied under low chloride concentrations, vanadate inhibits the blue light-stimulated swelling of Vicia faba L. guard cell protoplasts in a dose-dependent fashion. The volume of guard cell protoplasts incubated in 10 mm K-imino-diacetic acid, 0.4 m mannitol, and 1 mm CaCl2 remained essentially constant under 1000 μmol m−2 s−1 red light, but increased an average of 27% after 8 min of the addition of 50 μmol m−2 s−1 blue light to the background red light. At 500 μm, vanadate completely inhibits the response to blue light. Vanadate also inhibits the swelling of guard cell protoplasts stimulated by the H+-ATPase agonist fusicoccin. The vanadate sensitivity of the blue light-stimulated swelling implicates a proton-pumping ATPase as a component of the sensory transduction of blue light in guard cells.  相似文献   

15.
Fifteen ancestral genotypes of United States soybean cultivars were screened for differences in photosynthetic electron transport capacity using isolated thylakoid membranes. Plants were grown in controlled environment chambers under high or low irradiance conditions. Thylakoid membranes were isolated from mature leaves. Photosynthetic electron transport was assayed as uncoupled Hill activity using 2,6-dichlorophenolindophenol (DCIP). Soybean electron transport activity was dependent on genotype and growth irradiance and ranged from 6 to 91 mmol DCIP reduced [mol chlorophyll]–1 s–1. Soybean plastocyanin pool size ranged from 0.1 to 1.3 mol plastocyanin [mol Photosystem I]–1. In contrast, barley and spinach electron transport activities were 140 and 170 mmol DCIP reduced [mol chlorophyll]–1 s–1, respectively, with plastocyanin pool sizes of 3 to 4 mol plastocyanin [mol Photosystem I]–1. No significant differences in the concentrations of Photosystem II, plastoquinone, cytochrome b6f complexes, or Photosystem I were observed. Thus, genetic differences in electron transport activity were correlated with plastocyanin pool size. The results suggested that plastocyanin pool size can vary significantly and may limit photosynthetic electron transport capacity in certain species such as soybean. Soybean plastocyanin consisted of two isoforms with apparent molecular masses of 14 and 11 kDa, whereas barley and spinach plastocyanins each consisted of single polypeptides of 8 and 12 kDa, respectively.Abbreviations DAP days after planting - DCIP 2,6-dichlorophenolindophenol - LiDS lithium dodecyl sulfate - PPFD photosynthetic photon flux density (mol photons m–2 s–1) - PS I Photosystem I - PS II Photosystem II - P700 reaction center of Photosystem I The US Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   

16.
Studies were conducted to identify a 64-kD thylakoid membrane protein of unknown function. The protein was extracted from chloroplast thylakoids under low ionic strength conditions and purified to homogeneity by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Four peptides generated from the proteolytic cleavage of the wheat 64-kD protein were sequenced and found to be identical to internal sequences of the chloroplast-coupling factor (CF1) α-subunit. Antibodies for the 64-kD protein also recognized the α-subunit of CF1. Both the 64-kD protein and the 61-kD CF1 α-subunit were present in the monocots barley (Hordeum vulgare), maize (Zea mays), oat (Avena sativa), and wheat (Triticum aestivum); but the dicots pea (Pisum sativum), soybean (Glycine max Merr.), and spinach (Spinacia oleracea) contained only a single polypeptide corresponding to the CF1 α-subunit. The 64-kD protein accumulated in response to high irradiance (1000 μmol photons m−2 s−1) and declined in response to low irradiance (80 μmol photons m−2 s−1) treatments. Thus, the 64-kD protein was identified as an irradiance-dependent isoform of the CF1 α-subunit found only in monocots. Analysis of purified CF1 complexes showed that the 64-kD protein represented up to 15% of the total CF1 α-subunit.  相似文献   

17.
The enzyme catalase (EC 1.11.1.6) is light sensitive and subject to a rapid turnover in light, similar to the D1 reaction center protein of photosystem II. After 3 h of preadaptation to darkness or to different light intensities (90 and 520 μmol m−2 s−1 photosynthetic photon flux density), sections of rye leaves (Secale cereale L.) were labeled for 4 h with l-[35S]methionine. From leaf extracts, catalase was immunoprecipitated with an antiserum prepared against the purified enzyme from rye leaves. Both incorporation into catalase and degradation of the enzyme polypeptide during a subsequent 16-h chase period increased with light intensity. At a photon flux density of 520 μmol m−2 s−1, the apparent half-time of catalase in rye leaves was 3 to 4 h, whereas that of the D1 protein was much shorter, about 1.5 h. Exposure to stress conditions, such as 0.6 m NaCl or a heat-shock temperature of 40°C, greatly suppressed both total protein synthesis and incorporation of the label into catalase and into the D1 protein. Immunoblotting assays indicated that in light, but not in darkness, steady-state levels of catalase and of the D1 protein strongly declined during treatments with salt, heat shock, or translation inhibitors that block repair synthesis. Because of the common property of rapid photodegradation and the resulting dependence on continuous repair, declines in catalase as well as of the D1 protein represent specific and sensitive indicators for stress conditions that suppress the translational activities of leaves.  相似文献   

18.
Malva parviflora L. (mallow) is a species that occupies high-light habitats as a weedy invader in orchards and vineyards. Species of the Malvaceae are known to solar track and anecdotal evidence suggests this species may also. How M. parviflora responds physiologically to light in comparison with other species within the Malvaceae remains unknown. Tracking and photosynthetic responses to photon flux density (PFD) were evaluated on plants grown in greenhouse conditions. Tracking ability was assessed in the growth conditions and by exposing leaves to specific light intensities and measuring changes in the angle of the leaf plane. Light responses were also determined by photosynthesis and chlorophyll fluorescence. Leaves followed a heliotropic response which was highly PFD-dependent, with tracking rates increasing in a curvilinear pattern. Maximum tracking rates were up to 20°h−1 and saturated for light above 1300 μmol (photons) m−2 s−1. This high-light saturation, both for tracking (much higher than the other species), and for photosynthesis, confirmed mallow as a high-light demanding species. Further, because there was no photoinhibition, the leaves could capture the potential of an increased carbon gain in higher irradiance by resorting to solar tracking. Modelling suggested the tracking response could increase the annual carbon gain by as much as 25% compared with leaves that do not track the sun. The various leaf attributes associated with solar tracking, therefore, help to account for the success of this species as a weed in many locations worldwide.  相似文献   

19.
Rates of net photosynthesis (P N) and transpiration (E), and leaf temperature (TL) of maintenance leaves of tea under plucking were affected by photosynthetic photon flux densities (PPFD) of 200–2 200 μmol m−2 s−1. P N gradually increased with the increase of PPFD from 200 to 1 200 μmol m−2 s−1 and thereafter sharply declined. Maximum P N was 13.95 μmol m−2 s−1 at 1 200 μmol m−2 s−1 PPFD. There was no significant variation of P N among PPFD at 1 400–1 800 μmol m−2 s−1. Significant drop of P N occurred at 2 000 μmol m−2 s−1. PPFD at 2 200 μmol m−2 s−1 reduced photosynthesis to 6.92 μmol m−2 s−1. PPFD had a strong correlation with TL and E. Both TL and E linearly increased from 200 to 2 200 μmol m−2 s−1 PPFD. TL and E were highly correlated. The optimum TL for maximum P N was 26.0 °C after which P N declined significantly. E had a positive correlation with P N.  相似文献   

20.
Xu  Qingzhang  Kirkham  M.B. 《Photosynthetica》2003,41(1):27-32
Grain sorghum [Sorghum bicolor (L.) Moench. cvs. TX430 and KS82] was grown in a Haynie very fine sandy loam (coarse-silty, mixed, superactive, calcareous, mesic Mollic Udifluvents) under constant 47 % shade or full irradiance in a greenhouse under two watering regimes to see the combined and individual effects of low irradiance (LI) and low water (LW) on the sorghum genotypes. Under the high-irradiance (HI) and high-water (HW) treatment (control) and the LI-HW treatment, TX430 grew taller than KS82. Both LI and LW reduced several times the fresh and dry masses. Under the control conditions, TX430 reached its maximum net photosynthetic rate (P Nmax) of 28.93 mol m–2 s–1 at a photosynthetic photon flux density (PPFD) of 1 707 mol m–2 s–1, and KS82 reached its P Nmax of 28.32 mol m–2 s–1 at a PPFD of 2 973 mol m–2 s–1. The fact that TX430 had P Nmax under a lower PPFD than KS82 may relate to its taller growth under LI conditions. Hence genotypes of sorghum might be selected for low irradiance using curves relating P N to PPFD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号