首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The mummichog, Fundulus heteroclitus, exhibits extensive latitudinal clinal variation in a number of physiological and biochemical traits, coupled with phylogeographical patterns at mitochondrial and nuclear DNA loci that suggest a complicated history of spatially variable selection and secondary intergradation. This species continues to serve as a model for understanding local and regional adaptation to variable environments. Resolving the influences of historical processes on the distribution of genetic variation within and among extant populations of F. heteroclitus is crucial to a better understanding of how populations evolve in the context of contemporary environments. In this study, we analysed geographical patterns of genetic variation at eight microsatellite loci among 15 populations of F. heteroclitus distributed throughout the North American range of the species from Nova Scotia to Georgia. Genetic variation in Northern populations was lower than in Southern populations and was strongly correlated with latitude throughout the species range. The most common Northern alleles at all eight loci exhibited concordant latitudinal clinal patterns, and the existence of an abrupt transition zone in allele frequencies between Northern and Southern populations was similar to that observed for mitochondrial DNA and allozyme loci. A significant pattern of isolation by distance was observed both within and between northern and southern regions. This pattern was unexpected, particularly for northern populations, given the recent colonization history of post-Pleistocene habitats, and was inconsistent with either a recent northward population expansion or a geographically restricted northern Pleistocene refugium. The data provided no evidence for recent population bottlenecks, and estimates of historical effective population sizes suggest that post-Pleistocene populations have been large throughout the species distribution. These results suggest that F. heteroclitus was broadly distributed throughout most of its current range during the last glacial event and that the abrupt transition in allele frequencies that separate Northern and Southern populations may reflect regional disequilibrium conditions associated with the post-Pleistocene colonization history of habitats in that region.  相似文献   

2.
There is widespread concern regarding the impacts of anthropogenic activities on connectivity among populations of plants and animals, and understanding how contemporary and historical processes shape metapopulation dynamics is crucial for setting appropriate conservation targets. We used genetic data to identify population clusters and quantify gene flow over historical and contemporary time frames in the Diamondback Terrapin (Malaclemys terrapin). This species has a long and complicated history with humans, including commercial overharvesting and subsequent translocation events during the early twentieth century. Today, terrapins face threats from habitat loss and mortality in fisheries bycatch. To evaluate population structure and gene flow among Diamondback Terrapin populations in the Chesapeake Bay region, we sampled 617 individuals from 15 localities and screened individuals at 12 polymorphic microsatellite loci. Our goals were to demarcate metapopulation structure, quantify genetic diversity, estimate effective population sizes, and document temporal changes in gene flow. We found that terrapins in the Chesapeake Bay region harbour high levels of genetic diversity and form four populations. Effective population sizes were variable. Among most population comparisons, estimates of historical and contemporary terrapin gene flow were generally low (m ≈ 0.01). However, we detected a substantial increase in contemporary gene flow into Chesapeake Bay from populations outside the bay, as well as between two populations within Chesapeake Bay, possibly as a consequence of translocations during the early twentieth century. Our study shows that inferences across multiple time scales are needed to evaluate population connectivity, especially as recent changes may identify threats to population persistence.  相似文献   

3.
Hänfling B  Weetman D 《Genetics》2006,173(3):1487-1501
River systems are vulnerable to natural and anthropogenic habitat fragmentation and will often harbor populations deviating markedly from simplified theoretical models. We investigated fine-scale population structure in the sedentary river fish Cottus gobio using microsatellites and compared migration estimates from three FST estimators, a coalescent maximum-likelihood method and Bayesian recent migration analyses. Source-sink structure was evident via asymmetry in migration and genetic diversity with smaller upstream locations emigration biased and larger downstream subpopulations immigration biased. Patterns of isolation by distance suggested that the system was largely, but not entirely, in migration-drift equilibrium, with headwater populations harboring a signal of past colonizations and in some cases also recent population bottlenecks. Up- vs. downstream asymmetry in population structure was partly attributable to the effects of flow direction, but was enhanced by weirs prohibiting compensatory upstream migration. Estimators of migration showed strong correspondence, at least in relative terms, especially if pairwise FST was used as an indirect index of relative gene flow rather than being translated to Nm. Since true parameter values are unknown in natural systems, comparisons among estimators are important, both to determine confidence in estimates of migration and to validate the performance of different methods.  相似文献   

4.
Intensive efforts are underway to restore depleted stocks of Crassostrea virginica in Chesapeake Bay. However, the extent of gene flow among local populations, an important force mediating the success of these endeavors, is poorly understood. Spatial and temporal population structures were examined in C. virginica from Chesapeake Bay using eight microsatellite loci. Deficits in heterozygosity relative to Hardy-Weinberg expectations were seen at all loci and were best explained by null alleles. Permutation tests indicated that heterozygote deficiency reduced power in tests of differentiation. Nonetheless, genotypic exact tests demonstrated significant levels of geographic differentiation overall, and a subtle pattern of isolation by distance (IBD) was observed. Comparisons between age classes failed to show differences in genotype frequencies, allelic richness, gene diversity, or differentiation as measured by F(ST), contrary to predictions made by the sweepstakes hypothesis. The IBD pattern could reflect an evolutionary equilibrium established because local gene flow predominates, or be influenced in either direction by recent anthropogenic activities. An evolutionary interpretation appears justified as more parsimonious, implying that local efforts to restore oyster populations will have local demographic payoffs, perhaps at the scale of tributaries or regional subestuaries within Chesapeake Bay.  相似文献   

5.
Xiao Y  Zhang Y  Yanagimoto T  Li J  Xiao Z  Gao T  Xu S  Ma D 《Genetica》2011,139(2):187-198
Intraspecific phylogenies can provide useful insights into how populations have been shaped by historical and contemporary processes. To determine the population genetic structure and the demographic and colonization history of Cleisthenes herzensteini in the Northwestern Pacific, one hundred and twenty-one individuals were sampled from six localities along the coastal regions of Japan and the Yellow Sea of China. Mitochondrial DNA variation was analyzed using DNA sequence data from the 5′ end of control region. High levels of haplotype diversity (>0.96) were found for all populations, indicating a high level of genetic diversity. No pattern of isolation by distance was detected among the population differentiation throughout the examined range. Analyses of molecular variance (AMOVA) and the conventional population statistic Fst revealed no significant population genetic structure among populations. According to the exact test of differentiation among populations, the null hypothesis that C. herzensteini within the examined range constituted a non-differential mtDNA gene pool was accepted. The demographic history of C. herzensteini was examined using neutrality test and mismatch distribution analyses and results indicated Pleistocene population expansion (about 94–376 kya) in the species, which was consistent with the inference result of nested clade phylogeographical analysis (NCPA) showing contiguous range expansion for C. herzensteini. The lack of phylogeographical structure for the species may reflect a recent range expansion after the glacial maximum and insufficient time to attain migration-drift equilibrium.  相似文献   

6.
7.
The ecological theory of adaptive radiation predicts that the evolution of phenotypic diversity within species is generated by divergent natural selection arising from different environments and competition between species. Genetic connectivity among populations is likely also to have an important role in both the origin and maintenance of adaptive genetic diversity. Our goal was to evaluate the potential roles of genetic connectivity and natural selection in the maintenance of adaptive phenotypic differences among morphs of Arctic charr, Salvelinus alpinus, in Iceland. At a large spatial scale, we tested the predictive power of geographic structure and phenotypic variation for patterns of neutral genetic variation among populations throughout Iceland. At a smaller scale, we evaluated the genetic differentiation between two morphs in Lake Thingvallavatn relative to historically explicit, coalescent-based null models of the evolutionary history of these lineages. At the large spatial scale, populations are highly differentiated, but weakly structured, both geographically and with respect to patterns of phenotypic variation. At the intralacustrine scale, we observe modest genetic differentiation between two morphs, but this level of differentiation is nonetheless consistent with strong reproductive isolation throughout the Holocene. Rather than a result of the homogenizing effect of gene flow in a system at migration-drift equilibrium, the modest level of genetic differentiation could equally be a result of slow neutral divergence by drift in large populations. We conclude that contemporary and recent patterns of restricted gene flow have been highly conducive to the evolution and maintenance of adaptive genetic variation in Icelandic Arctic charr.  相似文献   

8.
Drosophila gouveai is a cactus-breeding species with a naturally fragmented distribution in central-western and southeastern Brazil. In this study, a neutral genetic marker (microsatellite DNA) and a quantitative trait (wing morphology) were used to investigate the population structure of eight populations of D. gouveai . Quantitative analysis was done using a morphometric approach and multivariate analysis of 17 wing parameters. Drosophila gouveai showed a large degree of genetic population differentiation ( F ST = 0.245). A molecular analysis of variance showed that the population structure was attributable mainly to genetic differences among the population groups, which were correlated with regional groupings. A Bayesian cluster analysis also identified the same regional groupings as contributing to the population structure. Assignment tests revealed that the current gene flow was very restricted. The divergence in wing morphology among populations was also high, and revealed a geographical pattern that conformed to a latitudinal cline. In contrast to current factors such as migration-drift equilibrium, these results indicated that the genetic population structure of D. gouveai was shaped predominantly by historical factors.  相似文献   

9.
Rapana venosa is a predatory marine gastropod native to the coastal waters of China, Korea, and Japan. Since the 1940s, R. venosa has been transported around the globe and introduced populations now exist in the Black Sea, the Mediterranean Sea, the Adriatic and Aegean seas, off the coasts of France and the Netherlands, in Chesapeake Bay, Virginia, USA, and in the Rio de la Plata between Uruguay and Argentina. This study surveyed variation in two mitochondrial gene regions to investigate the invasion pathways of R. venosa, identify likely sources for introduced populations, and evaluate current hypotheses of potential transportation vectors. Sequence data were obtained for the mitochondrial cytochrome c oxidase I and NADH dehydrogenase subunit 2 gene regions of 178 individuals from eight native locations and 106 individuals from 12 introduced locations. Collections from within the native range displayed very high levels of genetic variation while collections from all introduced populations showed a complete lack of genetic diversity; a single haplotype was common to all introduced individuals. This finding is consistent with the hypothesis that R. venosa was initially introduced into the Black Sea, and this Black Sea population then served as a source for the other secondary invasions by various introduction vectors including ballast water transport. Although non‐native R. venosa populations currently appear to be thriving in their new environments, the lack of genetic variability raises questions regarding the evolutionary persistence of these populations.  相似文献   

10.
Both historical and contemporary processes influence the genetic structure of species, but the relative roles of such processes are still difficult to access. Population genetic studies of species with recent evolutionary histories such as the New Zealand endemic scallop Pecten novaezelandiae (<1 Ma) permit testing of the effects of recent processes affecting gene flow and shaping genetic structure. In addition, studies encompassing the entire distributional range of species can provide insight into colonization processes. Analyses of genetic variation in P. novaezelandiae (952 individuals from 14 locations, genotyped at 10 microsatellite loci) revealed a weak but significant regional structure across the distributional range of the species, as well as latitudinal gradients of genetic diversity and differentiation: estimates of migration rates supported these patterns. Our results suggest that the observed genetic structure and latitudinal gradients reflect a stepping‐stone model of colonization (north to south) and emerging divergence of populations as a result of ongoing limitations to gene flow and insufficient time to reach migration–drift equilibrium. The low levels of interpopulation and interregional genetic differentiation detected over hundreds of kilometres reflect the recent evolutionary history of P. novaezelandiae and stand in contrast to patterns reported for other evolutionary older species at the same spatial scale. The outcomes of this study contribute to a better understanding of evolutionary processes influencing the genetic variation of species and provide vital information on the genetic structure of P. novaezelandiae.  相似文献   

11.
Hu XS  Ennos RA 《Genetics》1999,152(1):441-450
The classical island and one-dimensional stepping-stone models of population genetic structure developed for animal populations are extended to hermaphrodite plant populations to study the behavior of biparentally inherited nuclear genes and organelle genes with paternal and maternal inheritance. By substituting appropriate values for effective population sizes and migration rates of the genes concerned into the classical models, expressions for genetic differentiation and correlation in gene frequency between populations can be derived. For both models, differentiation for maternally inherited genes at migration-drift equilibrium is greater than that for paternally inherited genes, which in turn is greater than that for biparentally inherited nuclear genes. In the stepping-stone model, the change of genetic correlation with distance is influenced by the mode of inheritance of the gene and the relative values of long- and short-distance migration by seed and pollen. In situations where it is possible to measure simultaneously Fst for genes with all three types of inheritance, estimates of the relative rates of pollen to seed flow can be made for both the short- and long-distance components of migration in the stepping-stone model.  相似文献   

12.
Interpreting patterns of population structure in nature is often challenging, especially in dynamic landscapes where population genetic connectivity evolves over time. In this study, we document the absence of migration-drift equilibrium in a stream-dwelling euryhaline fish resulting from past fine-scale drainage rearrangements and evaluate the relative contribution of past and current hydrological landscapes on observed population structure. Based on allelic variation at nine microsatellite loci, genetic relationships among 12 populations of brook charr, Salvelinus fontinalis, from Gros Morne National Park of Canada (GMNP, Newfoundland, Canada) did not reflect current stream hierarchical structure. In addition, we observed no correlation between population differentiation and contemporary landscape features (waterway distance and sums of altitudinal differences). Instead, population relationships were consistent with historical hydrological structure predicted a priori based on geomorphological and biogeographical evidences. Also, population differentiation was strongly correlated with inferred historical landscape features. Contemporary barriers have apparently preserved the signature of past genetic connectivity by constraining gene flow. Based on the relationships between population differentiation and current and past landscape features at various spatial scales, we suggest that brook charr genetic diversity in GMNP is mostly the result of small distance migrations at the time of colonization and subsequent differentiation through drift. This study highlights the potential of approaching landscapes from a combination of contemporary and historical perspectives when interpreting nonequilibrium population structures resulting from landscape rearrangement.  相似文献   

13.
Following glacial recession in southeast Alaska, waterfalls created by isostatic rebound have isolated numerous replicate populations of coastal cutthroat trout (Oncorhynchus clarkii clarkii) in short coastal streams. These replicate isolated populations offer an unusual opportunity to examine factors associated with the maintenance of genetic diversity. We used eight microsatellites to examine genetic variation within and differentiation among 12 population pairs sampled from above and below these natural migration barriers. Geological evidence indicated that the above-barrier populations have been isolated for 8,000–12,500 years. Genetic differentiation among below-barrier populations (F ST = 0.10, 95% C.I. 0.08–0.12) was similar to a previous study of more southern populations of this species. Above-barrier populations were highly differentiated from adjacent below-barrier populations (mean pairwise F ST = 0.28; SD 0.18) and multiple lines of evidence were consistent with asymmetric downstream gene flow that varied among streams. Each above-barrier population had reduced within-population genetic variation when compared to the adjacent below-barrier population. Within-population genetic diversity was significantly correlated with the amount of available habitat in above-barrier sites. Increased genetic differentiation of above-barrier populations with lower genetic diversity suggests that genetic drift has been the primary cause of genetic divergence. Long-term estimates of N e based on loss of heterozygosity over the time since isolation were large (3,170; range 1,077–7,606) and established an upper limit for N e if drift were the only evolutionary process responsible for loss of genetic diversity. However, it is likely that a combination of mutation, selection, and gene flow have also contributed to the genetic diversity of above-barrier populations. Contemporary above-barrier N e estimates were much smaller than long-term N e estimates, not correlated with within-population genetic diversity, and not consistent with the amount of genetic variation retained, given the approximate 10,000-year period of isolation. The populations isolated by waterfalls in this study that occur in larger stream networks have retained substantial genetic variation, which suggests that the amount of habitat in headwater streams is an important consideration for maintaining the evolutionary potential of isolated populations.  相似文献   

14.
Comparative analyses of nuclear and organelle genetic markers may help delineate evolutionarily significant units or management units, although population differentiation estimates from multiple genomes can also conflict. Striped bass (Morone saxatilis) are long-lived, highly migratory anadromous fish recently recovered from a severe decline in population size. Previous studies with protein, nuclear DNA and mitochondrial DNA (mtDNA) markers produced discordant results, and it remains uncertain if the multiple tributaries within Chesapeake Bay constitute distinct management units. Here, 196 young-of-the-year (YOY) striped bass were sampled from Maryland's Choptank, Potomac and Nanticoke Rivers and the north end of Chesapeake Bay in 1999 and from Virginia's Mataponi and Rappahannock Rivers in 2001. A total of 10 microsatellite loci exhibited between two and 27 alleles per locus with observed heterozygosities between 0.255 and 0.893. The 10-locus estimate of R(ST) among the six tributaries was -0.0065 (95% confidence interval -0.0198 to 0.0018). All R(ST) and all but one theta estimates for pairs of populations were not significantly different from zero. Reanalysis of Chesapeake Bay striped bass mtDNA data from two previous studies estimated population differentiation between theta=-0.002 and 0.160, values generally similar to mtDNA population differentiation predicted from microsatellite R(ST) after adjusting for reduced effective population size and uniparental inheritance in organelle genomes. Based on mtDNA differentiation, breeding sex ratios or gene flow may have been slightly male biased in some years. The results reconcile conflicting past studies based on different types of genetic markers, supporting a single Chesapeake Bay management unit encompassing a panmictic striped bass breeding population.  相似文献   

15.
Patterns of population structure and historical genetic demography of blacknose sharks in the western North Atlantic Ocean were assessed using variation in nuclear‐encoded microsatellites and sequences of mitochondrial (mt)DNA. Significant heterogeneity and/or inferred barriers to gene flow, based on microsatellites and/or mtDNA, revealed the occurrence of five genetic populations localized to five geographic regions: the southeastern U.S Atlantic coast, the eastern Gulf of Mexico, the western Gulf of Mexico, Bay of Campeche in the southern Gulf of Mexico and the Bahamas. Pairwise estimates of genetic divergence between sharks in the Bahamas and those in all other localities were more than an order of magnitude higher than between pairwise comparisons involving the other localities. Demographic modelling indicated that sharks in all five regions diverged after the last glacial maximum and, except for the Bahamas, experienced post‐glacial, population expansion. The patterns of genetic variation also suggest that the southern Gulf of Mexico may have served as a glacial refuge and source for the expansion. Results of the study demonstrate that barriers to gene flow and historical genetic demography contributed to contemporary patterns of population structure in a coastal migratory species living in an otherwise continuous marine habitat. The results also indicate that for many marine species, failure to properly characterize barriers in terms of levels of contemporary gene flow could in part be due to inferences based solely on equilibrium assumptions. This could lead to erroneous conclusions regarding levels of connectivity in species of conservation concern.  相似文献   

16.
Chiucchi JE  Gibbs HL 《Molecular ecology》2010,19(24):5345-5358
Populations of endangered taxa in recently fragmented habitats often show high levels of genetic structure, but the role that contemporary versus historical processes play in generating this pattern is unclear. The eastern massasauga rattlesnake (Sistrurus c. catenatus) is an endangered snake that presently occurs throughout central and eastern North America in a series of populations that are isolated because of habitat fragmentation and destruction. Here, we use data from 19 species-specific microsatellite DNA loci to assess the levels of genetic differentiation, genetic effective population size, and contemporary and historical levels of gene flow for 19 populations sampled across the range of this snake. Eastern massasaugas display high levels of genetic differentiation (overall θ(Fst) = 0.21) and a Bayesian clustering method indicates that each population represents a unique genetic cluster even at regional spatial scales. There is a twofold variation in genetically effective population sizes but little genetic evidence that populations have undergone recent or historical declines in size. Finally, both contemporary and historical migration rates among populations were low and similar in magnitude even for populations located <7 km apart. A test of alternate models of population history strongly favours a model of long-term drift-migration equilibrium over a recent isolation drift-only model. These results suggest that recent habitat fragmentation has had little effect on the genetic characteristics of these snakes, but rather that this species has historically existed in small isolated populations that may be resistant to the long-term negative effects of inbreeding.  相似文献   

17.
Murray MC  Hare MP 《Molecular ecology》2006,15(13):4229-4242
The degree of population structure within species often varies considerably among loci. This makes it difficult to determine whether observed variance reflects neutral-drift stochasticity or locus-specific selection at one or more loci. This uncertainty is exacerbated when evolutionary equilibrium cannot be assumed and/or admixture potentially inflates genomic variance. Thus, the value of a 'genome scan', where locus-specific summary statistics are compared with a simulated neutral distribution among loci, may be limited in secondary contact zones if the null distribution is sensitive to the timing of secondary contact. Of particular interest here is the wide variance previously observed in locus-specific patterns of population structure between Atlantic and Gulf of Mexico populations of eastern oyster, Crassostrea virginica. To test the robustness of an equilibrium null model, we compared among-locus distributions of F(ST) simulated under migration-drift equilibrium and several nonequilibrium secondary contact histories. We then tested for evidence of divergent selection between two oyster populations on either side of a secondary contact zone using 215 amplified fragment length polymorphism (AFLP) loci. Constant-migration equilibrium and nonequilibrium secondary-contact simulations produced equivalent distributions of F(ST) when anchored by the global mean F(ST) observed in oysters, 0.0917. The 99th quantile of simulated neutral F(ST) encompassed most of the variation among oyster loci. Three AFLP loci exhibited F(ST) values higher than this threshold. Although no locus was significant after correcting for multiple tests, our results show in geographically clinal organisms: AFLPs can efficiently characterize the genomic distribution of F(ST); equilibrium models can be used to evaluate outliers; these procedures help focus research on genomic regions of interest.  相似文献   

18.
Gene flow among small fragmented populations is critical for maintaining genetic diversity, and therefore the evolutionary potential of a species. Concern for two New Zealand endemic subspecies, the Hector’s (Cephalorhynchus hectori hectori) and Maui’s (C. h. maui) dolphins, arises from their low abundance, slow rate of reproduction, and susceptibility to fisheries-related mortality. Our work examined genetic differentiation and migration between the subspecies and among regional and local Hector’s dolphin populations using mitochondrial (mt) DNA and microsatellite genotypes from 438 samples. Results confirmed earlier reports of a single unique mtDNA control region haplotype fixed in the Maui’s dolphin, and provided new evidence of reproductive isolation from Hector’s dolphins (9-locus microsatellite F ST?=?0.167, P?<?0.001). Independent evolutionary trajectories were also supported for Hector’s dolphin populations of the East Coast, West Coast, Te Waewae Bay and Toetoe Bay. Low asymmetrical migration rates were found among several Hector’s dolphin populations and assignment tests identified five Hector’s dolphins likely to have a migrant father from another regional population. There appears to be sufficient step-wise gene flow to maintain genetic diversity within the East and West Coasts; however, the two local South Coast populations exhibited a high degree of differentiation given their close proximity (~100?km). To maintain the evolutionary potential and long-term survival of both subspecies, genetic monitoring and conservation management must focus on maintaining corridors to preserve gene flow and prevent further population fragmentation and loss of genetic diversity, in addition to maintaining local population abundances.  相似文献   

19.
Historical and contemporary evolutionary processes can both contribute to patterns of phenotypic variation among populations of a species. Recent studies are revealing how interactions between historical and contemporary processes better explain observed patterns of phenotypic divergence than either process alone. Here, we investigate the roles of evolutionary history and adaptation to current environmental conditions in structuring phenotypic variation among polyphenic populations of sunfish inhabiting 12 postglacial lakes in eastern North America. The pumpkinseed sunfish polyphenism includes sympatric ecomorphs specialized for littoral or pelagic lake habitats. First, we use population genetic methods to test the evolutionary independence of within-lake phenotypic divergences of ecomorphs and to describe patterns of genetic structure among lake populations that clustered into three geographical groupings. We then used multivariate analysis of covariance (MANCOVA) to partition body shape variation (quantified with geometric morphometrics) among the effects of evolutionary history (reflecting phenotypic variation among genetic clusters), the shared phenotypic response of all populations to alternate habitats within lakes (reflecting adaptation to contemporary conditions), and unique phenotypic responses to habitats within lakes nested within genetic clusters. All effects had a significant influence on body form, but the effects of history and the interaction between history and contemporary habitat were larger than contemporary processes in structuring phenotypic variation. This highlights how divergence can be better understood against a known backdrop of evolutionary history.  相似文献   

20.
Fragmentation and loss of natural habitat have important consequences for wild populations and can negatively affect long-term viability and resilience to environmental change. Salt marsh obligate species, such as those that occupy the San Francisco Bay Estuary in western North America, occupy already impaired habitats as result of human development and modifications and are highly susceptible to increased habitat loss and fragmentation due to global climate change. We examined the genetic variation of the California Ridgway’s rail (Rallus obsoletus obsoletus), a state and federally endangered species that occurs within the fragmented salt marsh of the San Francisco Bay Estuary. We genotyped 107 rails across 11 microsatellite loci and a single mitochondrial gene to estimate genetic diversity and population structure among seven salt marsh fragments and assessed demographic connectivity by inferring patterns of gene flow and migration rates. We found pronounced genetic structuring among four geographically separate genetic clusters across the San Francisco Bay. Gene flow analyses supported a stepping stone model of gene flow from south-to-north. However, contemporary gene flow among the regional embayments was low. Genetic diversity among occupied salt marshes and genetic clusters were not significantly different. We detected low effective population sizes and significantly high relatedness among individuals within salt marshes. Preserving genetic diversity and connectivity throughout the San Francisco Bay may require attention to salt marsh restoration in the Central Bay where habitat is both most limited and most fragmented. Incorporating periodic genetic sampling into the management regime may help evaluate population trends and guide long-term management priorities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号