首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 847 毫秒
1.
Cells of Vibrio costicola at pH 8.5 generate both membrane potential (inside negative) and delta pH (inside acidic) in the presence of a proton conductor, carbonyl cyanide m-chlorophenylhydrazone (CCCP). The generation of CCCP-resistant membrane potential was inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide that is known to inhibit the Na+-motive NADH oxidase of Vibrio alginolyticus. NADH oxidase, but not lactate oxidase, of inverted membrane vesicles prepared from V. costicola required Na+ for a maximum activity and was inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide. By the oxidation of NADH, inverted membrane vesicles generated concentration gradients of Na+ across the membrane, whose magnitude was always larger than that of delta pH by about 50 mV. In contrast, magnitudes of delta pH and Na+ concentration gradients generated by the oxidation of lactate were similar. Na+ translocation in the presence of lactate was inhibited by CCCP but little affected by valinomycin. On the other hand, Na+ translocation in the presence of NADH was resistant to CCCP and stimulated by valinomycin. Amiloride, an inhibitor for a eucaryotic Na+/H+ antiport system, inhibited the lactate-dependent Na+ translocation but had little effect on the NADH-dependent Na+ translocation. These results indicate that a primary event of lactate oxidation is the translocation of H+, which then causes the generation of Na+ concentration gradients via the secondary Na+/H+ antiport system. We conclude that the NADH oxidase of V. costicola translocates Na+ as an immediate result of respiration, leading to the generation of Na+ electrochemical potential.  相似文献   

2.
The role of Na+ in Vibrio alginolyticus oxidative phosphorylation has been studied. It has been found that the addition of a respiratory substrate, lactate, to bacterial cells exhausted in endogenous pools of substrates and ATP has a strong stimulating effect on oxygen consumption and ATP synthesis. Phosphorylation is found to be sensitive to anaerobiosis as well as to HQNO, an agent inhibiting the Na+-motive respiratory chain of V. alginolyticus. Na+ loaded cells incubated in a K+ or Li+ medium fail to synthesize ATP in response to lactate addition. The addition of Na+ at a concentration comparable to that inside the cell is shown to abolish the inhibiting effect of the high intracellular Na+ level. Neither lactate oxidation nor delta psi generation coupled with this oxidation is increased by external Na+ in the Na+-loaded cells. It is concluded that oxidative ATP synthesis in V. alginolyticus cells is inhibited by the artificially imposed reverse delta pNa, i.e., [Na+]in greater than [Na+]out. Oxidative phosphorylation is resistant to a protonophorous uncoupler (0.1 mM CCCP) in the K+-loaded cells incubated in a high Na+ medium, i.e., when delta pNa of the proper direction [( Na+]in less than [Na+]out) is present. The addition of monensin in the presence of CCCP completely arrests the ATP synthesis. Monensin without CCCP is ineffective. Oxidative phosphorylation in the same cells incubated in a high K+ medium (delta pNa is low) is decreased by CCCP even without monensin. Artificial formation of delta pNa by adding 0.25 M NaCl to the K+-loaded cells (Na+ pulse) results in a temporary increase in the ATP level which spontaneously decreases again within a few minutes. Na+ pulse-induced ATP synthesis is completely abolished by monensin and is resistant to CCCP, valinomycin and HQNO. 0.05 M NaCl increases the ATP level only slightly. Thus, V. alginolyticus cells at alkaline pH represent the first example of an oxidative phosphorylation system which uses Na+ instead of H+ as the coupling ion.  相似文献   

3.
Subbacterial vesicles capable of generating delta psi during NADH oxidation were obtained. The oxidation of NADH was stimulated by Na+ and inhibited by 2-heptyl-4-oxyquinoline-N-oxide (HQNO) in submicromolar concentrations. The generation of delta psi was inhibited by HQNO in low concentrations, cyanide, gramicidine D and carbonyl cyanide-m-chlorophenylhydrazone (CCCP) in combination with monensine. At the same time, in the absence of monensine CCCP influenced the delta psi generation in a much lesser degree. In subbacterial vesicles delta psi generation coupled with NADH oxidation necessitated Na+. Experiments with intact cells of V. alginolyticus revealed that cell motility depends on Na+, is sensitive to CCCP + monensine as well as to arsenate + HQNO, cyanide or anaerobiosis. In the absence of arsenate, the inhibition of respiration partly decreased the rate of bacterial movement. In the presence of HQNO and arsenate, NaCl addition to K+-loaded cells led to the monensine preventing restoration of the cell motility during a few minutes. However, no stimulating effect was observed in the case of artificial delta pH formation as a result of acidification of the medium (from pH 8.6 to pH 6.5). The experimental results suggest that delta mu Na+ generated by the respiratory chain and by the arsenate-sensitive enzymatic system (presumably, glycolysis and Na+-ATPase) can be utilized by the Na+-driven molecular motor responsible for the motility of V. alginolyticus cells.  相似文献   

4.
The addition of ATP to bovine neurohypophysial secretory granules suspended in isotonic sucrose medium induces a positive polarization, delta psi, of their interior without affecting their internal pH. In KCl-containing media, ATP failed to generate large delta psi but induced a pH gradient (delta pH; interior acidic). These observations are consistent with the existence in the neurosecretory granule membrane of an ATP-dependent inward electrogenic H+ translocase (H+ pump), capable in KCl-containing media of acidifying the granule matrix by H+-Cl- cotransport. The delta psi and delta pH generated by the H+ pump, defined as the ATP-induced changes sensitive to the H+ ionophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), were blocked by N,N'-dicyclohexylcarbodiimide, an inhibitor of all H+ pumps, and were insensitive to oligomycin, a mitochondrial ATPase inhibitor. In sucrose medium, measurements were complicated by a Donnan equilibrium reflecting the presence in the granule of peptide hormones and neurophysins which resulted in a CCCP-resistant resting delta pH. In KCl-containing media, the Donnan equilibrium was destroyed since the membrane is permeable to cations, but under these conditions a CCCP-resistant K+-diffusion potential was observed. The ATP-induced delta psi was also monitored by the extrinsic fluorescent probe bis(3-phenyl-5-oxoisoxazol-4-yl)pentamethine oxonol. The hypothesis of a granule H+ pump is further supported by the presence of an oligomycin-resistant ATPase in the preparation and the ultrastructural localization of such an activity on the granule membrane. The H+ pump has been found in both newly formed and aged neurosecretory granules. Its possible physiological function is discussed with reference to that of chromaffin granules, with which it has many similarities.  相似文献   

5.
Vibrio alginolyticus, a halophilic marine bacterium, produced an extracellular amylase with a molecular mass of approximately 56,000, and the amylase appeared to be subject to catabolite repression mediated by cAMP. The production of amylase at pH 6.5, at which the respiratory chain-linked H+ pump functions, was inhibited about 75% at 24 hours following the addition of 2 microM carbonyl cyanide m-chlorophenylhydrazone (CCCP), while the production at pH 8.5, at which the respiratory chain-linked Na+ pump functions, was only slightly inhibited by the addition of 2 microM CCCP. In contrast, the production of amylase in a mutant bacterium defective in the Na+ pump was almost completely inhibited even at pH 8.5 as well as pH 6.5 by the addition of 2 microM CCCP.  相似文献   

6.
Roles of the respiratory Na+ pump in bioenergetics of Vibrio alginolyticus   总被引:3,自引:0,他引:3  
Bioenergetic characteristics of Na+ pump-defective mutants of a marine bacterium Vibrio alginolyticus were compared with those of the wild type and revertant. Generation of membrane potential and motility at pH 8.5 in the mutants were completely inhibited by a proton conductor, carbonylcyanide m-chlorophenylhydrazone, whereas those in the wild type or revertant were resistant to the inhibitor. Motility and amino acid transport were driven by the electrochemical potential of Na+ not only in the wild type or revertant but also in the mutants. In the absence of the proton conductor, motility and amino acid transport of the mutants did not significantly differ from those of the wild type or revertant even at pH 8.5, where the Na+ pump has maximum activity. Therefore, the electrochemical potential of Na+ in the mutants seemed to be maintained at a normal level by a respiration-dependent H+ pump and Na+/H+ antiporter. On the other hand, growth of the mutants became defective as the medium pH increased, especially on minimal medium. These results indicate that the Na+ pump is an important energy-generating mechanism when nutrients are limited at alkaline pH.  相似文献   

7.
A protein translocation system was reconstituted from inverted membrane vesicles prepared from Na+ pump-possessing Vibrio alginolyticus and purified Escherichia coli SecA. The translocation required ATP and was stimulated by the functioning of the Na+ pump, suggesting that the electrochemical potential of Na+, but not that of H+, is important for protein translocation in Vibrio.  相似文献   

8.
Cho KH  Kim YJ 《Molecules and cells》2000,10(4):432-436
Membranes of Pseudomonas nautica, grown aerobically on a complex medium, oxidized both NADH and deamino-NADH as substrates. The activity of membrane-bound NADH oxidase was activated by monovalent cations including Na+, Li+, and K+. The activation by Na+ was higher than that by Li+ and K+. The maximum activity of NADH oxidase was obtained at about pH 9.0 in the presence of 0.08 M NaCl. The NADH oxidase activity was completely inhibited by 60 microM 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO), while the NADH:quinone oxidoreductase activity was about 37% inhibited by 60 microM HQNO. The activities of NADH oxidase and NADH:quinone oxidoreductase were about 40% inhibited by 60 microM rotenone. The fluorescence quenching technique revealed that electron transfer from NADH to ubiquinone-1 (Q-1) or oxygen generated a membrane potential (deltapsi) which was larger and more stable in the presence of Na+ than in the absence of Na+. However, the All was highly sensitive to a protonophore, carbonyl-cyanide m-chlorophenylhydrazone (CCCP) even at alkaline pH.  相似文献   

9.
Inverted membrane vesicles prepared from Vibrio alginolyticus generated a membrane potential (positive inside) and accumulated Na+ by the oxidation of NADH. Generation of the membrane potential required Na+ and was inhibited by 2-heptyl-4-hydroxyquinoline N-oxide, a specific inhibitor of the Na+-dependent NADH oxidase. Collapse of the membrane potential by valinomycin stimulated the uptake of Na+. In contrast, accumulation of H+ was not detected under all the conditions tested. These results suggest that only Na+ is translocated by the Na+-dependent NADH oxidase of V. alginolyticus.  相似文献   

10.
A Undén  T Bartfai 《FEBS letters》1984,177(1):125-128
The Na+-motive NADH oxidase activity from Vibrio alginolyticus was extracted with octylglucoside and reconstituted into liposomes by dilution. On the addition of NADH, the reconstituted proteoliposomes generated delta psi (inside positive) and delta pH (inside alkaline) in the presence of a proton conductor CCCP, and accumulated Na+ in the presence of valinomycin. These results indicate that the NADH oxidase activity, reconstituted in opposite orientation, leads to the generation of an electrochemical potential of Na+ by the influx of Na+.  相似文献   

11.
An H(+)-translocating ATPase-defective mutant of Vibrio parahaemolyticus YS-1 grew well on lactate as a sole source of carbon at pH 8.5 under aerobic conditions, but not under anaerobic conditions. Both wild type cells and the mutant cells could grow on lactate at pH 8.5 even in the presence of an H+ conductor, carbonylcyanide m-chlorophenylhydrazone (CCCP), but not at pH 7.5. Oxidative phosphorylation resistant to CCCP in the mutant occurred at pH 8.5. These findings suggest the existence of Na(+)-coupled oxidative phosphorylation which is functional at alkaline pHs in V. parahaemolyticus. In fact, we observed ATP synthesis driven by an artificially imposed Na+ gradient in YS-1 cells, which was resistant to CCCP.  相似文献   

12.
Respiration, membrane potential generation and motility of the marine alkalotolerant Vibrio alginolyticus were studied. Subbacterial vesicles competent in NADH oxidation and delta psi generation were obtained. The rate of NADH oxidation by the vesicles was stimulated by Na+ in a fashion specifically sensitive to submicromolar HQNO (2-heptyl-4-hydroxyquinoline N-oxide) concentrations. The same amounts of HQNO completely suppressed the delta psi generation. Delta psi was also inhibited by cyanide, gramicidin D and by CCCP + monensin. CCCP (carbonyl cyanide m-chlorophenylhydrazone) added without monensin exerted a much weaker effect on delta psi. Na+ was required to couple NADH oxidation with delta psi generation. These findings are in agreement with the data of Tokuda and Unemoto on Na+-motive NADH oxidase in V. alginolyticus. Motility of V. alginolyticus cells was shown to be (i) Na+-dependent, (ii) sensitive to CCCP + monensin combination, whereas CCCP and monensin, added separately, failed to paralyze the cells, (iii) sensitive to combined treatment by HQNO, cyanide or anaerobiosis and arsenate, whereas inhibition of respiration without arsenate resulted only in a partial suppression of motility. Artificially imposed delta pNa, i.e., addition of NaCl to the K+ -loaded cells paralyzed by HQNO + arsenate, was shown to initiate motility which persisted for several minutes. Monensin completely abolished the NaCl effect. Under the same conditions, respiration-supported motility was only slightly lowered by monensin. The artificially-imposed delta pH, i.e., acidification of the medium from pH 8.6 to 6.5 failed to activate motility. It is concluded that delta mu Na+ produced by (i) the respiratory chain and (ii) an arsenate-sensitive anaerobic mechanism (presumably by glycolysis + Na+ ATPase) can be consumed by an Na+ -motor responsible for motility of V. alginolyticus.  相似文献   

13.
The marine bacterium Vibrio alginolyticus, containing 470 mM-K+ and 70 mM-Na+ inside its cells, was able to regulate the cytoplasmic pH (pH(in)) in the narrow range 7.6-7.8 over the external pH (pH(out)) range 6.0-9.0 in the presence of 400 mM-Na+ and 10 mM-K+. In the absence of external K+, however, pHin was regulated only at alkaline pH(out) values above 7.6. When the cells were incubated in the presence of unusually high K+ (400 mM) and 4 mM Na+, the pH(in) was regulated only at acidic pH(out) values below 7.6. These results could be explained by postulating a K+/H+ antiporter as the regulator of pH(in) over the pH(out) range 6.0-9.0. When Na(+)-loaded/K(+)-depleted cells were incubated in 400 mM-Na+ in the absence of K+, an inside acidic delta pH was generated at pH(out) values above 7.0. After addition of diethanolamine the inside acidic delta pH collapsed transiently and then returned to the original value concomitant with the extrusion of Na+, suggesting the participation of a Na+/H+ antiporter for the generation of an inside acidic delta pH. In the presence of 400 mM-K+, at least 5 mM-Na+ was required to support cell growth at pH(out) below 7.5. An increase in Na+ concentration allowed the cells to grow at a more alkaline pH(out). Furthermore, cells containing more Na+ inside could more easily adapt to grow at alkaline pH(out). These results indicated the importance of Na+ in acidification of the cell interior via a Na+/H+ antiporter in order to support cell growth at alkaline pH(out) under conditions where the activity of a K+/H+ antiporter is marginal.  相似文献   

14.
The site of Na+-dependent activation in the respiratory chain of the marine bacterium, Vibrio alginolyticus, was investigated. The respiratory chain system contained ubiquinones (Q), menaquinones (MK), cytochromes b(560), c(553), d(630), and o(560). The membrane-bound and partially purified NADH dehydrogenase was stimulated 2- to 3-fold by the addition of 0.2 M Na+ or K+ and no specific requirement for Na+ was observed in this reaction step. The cytochrome oxidase showed no requirement for monovalent cations. The respiratory activity (NADH oxidase) of the membrane was lost on removal of the quinones, and the reincorporation of authentic Q-10 or MK-4 restored the activity. The rate of MK-4 reduction by NADH (menaquinone reductase) as measured using MK-4 incorporated membrane was activated by Na+, but only slightly by K+. The apparent Ka for Na+ was 78 mM for both menaguinone reductase and NADH oxidase. The requirement for Na+ of menaquinone reductase was greatly reduced in the presence of 0.2 M K+. Ubiquinone reductase as measured by using Q-10 incorporated membrane was also activated more effectively by Na+ than by K+. These results strongly suggested that the site of Na+-dependent activation in the respiratory chain of marine V. alginolyticus was at the step of NADH; quinone oxidoreductase.  相似文献   

15.
An alkalo- and halo-tolerant aerobic microorganism has been isolated which, according to microbiological analysis data and the ribosomal 5S RNA sequence, is a Bacillus similar, but not identical, to B. licheniformis and B. subtilis. The microorganism, called Bacillus FTU, proved to be resistant to the protonophorous uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP). The fast growth of Bacillus FTU in the presence of CCCP was shown to require a high Na+ concentration in the medium. A procedure was developed to exhaust endogenous respiratory substrates in Bacillus FTU cells so that fast oxygen consumption by the cells was observed only when an exogenous respiratory substrate was added. The exhausted cells were found to oxidize ascorbate in the presence of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) in a cyanide-sensitive fashion. The ascorbate oxidation was coupled to the uphill Na+ extrusion which was stimulated by CCCP and a penetrating weak base, diethylamine, as well as by valinomycin with or without diethylamine. Operation of the Bacillus FTU terminal oxidase resulted in the generation of a delta psi which, in the Na+ medium, was slightly decreased by CCCP and strongly decreased by CCCP + diethylamine. In the K+ medium, CCCP discharged delta psi even without diethylamine. Ascorbate oxidation was competent in ATP synthesis which was resistant to CCCP in the Na+ medium and sensitive to CCCP in the K+ medium as if Na+- and H+-coupled oxidative phosphorylations were operative in the Na+ and K+ media, respectively. Inside-out subcellular vesicles of Bacillus FTU were found to be competent in the Na+ uptake supported by oxidation of ascorbate + TMPD or diaminodurene. CCCP or valinomycin + K+ increased the Na+ uptake very strongly. The process was completely inhibited by cyanide or monensin, the former, but not the latter, being inhibitory for respiration. The data obtained indicate that in Bacillus FTU there is not only H+-motive but also Na+-motive terminal oxidase activity.  相似文献   

16.
The mechanism for the extrusion of Na+ from Mycoplasma gallisepticum cells was examined. Na+ efflux from cells was studied by diluting 22Na+-loaded cells into an isoosmotic NaCl solution and measuring the residual 22Na+ in the cells. Uphill 22Na+ efflux was found to be glucose dependent and linear with time over a 60-s period and showed almost the same rate in the pH range of 6.5 to 8.0. 22Na+ efflux was markedly inhibited by dicyclohexylcarbodiimide (DCCD, 10 microM), but not by the proton-conducting ionophores SF6847 (0.5 microM) or carbonyl cyanide m-chlorophenylhydrazone (CCCP, 10 microM) over the entire pH range tested. An ammonium diffusion potential and a pH gradient were created by diluting intact cells or sealed membrane vesicles of M. gallisepticum loaded with NH4Cl into a choline chloride solution. The imposed H+ gradient (inside acid) was not affected by the addition of either NaCl or KCl to the medium. Dissipation of the proton motive force by CCCP had no effect on the growth of M. gallisepticum in the pH range of 7.2 to 7.8 in an Na+-rich medium. Additionally, energized M. gallisepticum cells were stable in an isoosmotic NaCl solution, even in the presence of proton conductors, whereas nonenergized cells tended to swell and lyse. These results show that in M. gallisepticum Na+ movement was neither driven nor inhibited by the collapse of the electrochemical gradient of H+, suggesting that in this organism Na+ is extruded by an electrogenic primary Na+ pump rather than by an Na+-H+ exchange system energized by the proton motive force.  相似文献   

17.
Protons are the most common coupling ions in bacterial energy conversions. However, while many organisms, such as the alkaliphilic Bacilli, employ H(+)-bioenergetics for electron transport phosphorylation, they use Na+ as the coupling ion for transport and flagellar movement. The Na+ gradient required for these bioenergetic functions is established by the secondary Na+/H+ antiporter. In contrast, Vibrio alginolyticus and methanogenic bacteria have primary pumps for both H+ and Na+. They use the proton gradient for ATP synthesis while other, less energy-consuming membrane reactions are powered by the Na+ gradient. In a third mode, some anaerobic bacteria possess decarboxylases acting as primary Na+ pumps. For instance, in Klebsiella pneumoniae, the Na+ gradient established by oxaloacetate decarboxylase is used for the uptake of the growth substrate citrate, and Propionigenium modestum consumes the energy of the Na+ gradient formed by methylmalonyl-CoA decarboxylase directly for ATP synthesis.  相似文献   

18.
Generation of membrane potential (inside-positive) and delta pH (inside-acidic) at two kinds of NADH:quinone oxidoreductase segments, the Na(+)-motive segment and another segment, of Vibrio alginolyticus was examined by monitoring the quenching of fluorescence of oxonol V and that of quinacrine, respectively, with inside-out membrane vesicles. Transient generation of membrane potential at the segment occurred when ubiquinone-1 was added in the presence of KCN and NADH. The membrane potential was resistant to a proton conductor, carbonylcyanide m-chlorophenylhydrazone, indicating that the membrane potential was generated specifically at the Na(+)-motive segment. On the other hand, neither membrane potential nor delta pH was generated at another segment. The Na(+)-motive segment did not generate delta pH, indicating that only Na+ is extruded at this segment. Furthermore, generation of membrane potential and delta pH at the NADH:quinone oxidoreductase segment of V. anguillarum was examined by using the fluorescence quenching technique. This segment of the bacterium was also found to generate delta psi by the extrusion of Na+ but not H+. These results revealed that the fluorescence quenching technique is useful for the rapid identification and characterization of the respiratory segment involved in Na+ translocation.  相似文献   

19.
Proton circulation in Vibrio costicola.   总被引:3,自引:2,他引:1       下载免费PDF全文
The importance of proton movements was assessed in the moderate halophile Vibrio costicola. When anaerobic cells in acidic buffer (pH 6.5) were given an O2 pulse, protons were extruded regardless of the presence of Na+. At pH 8.5, however, V. costicola produced an acidic response to an O2 pulse in the absence of Na+ and an alkaline response when Na+ was present. An Na+/H+ antiport activity was confirmed at pH 8.5. All of these effects were prevented by protonophores or butanol treatment. Growth in complex medium at pH 8.5 was prevented by a high concentration (50 microM) of carbonyl cyanide m-chlorophenyl-hydrazone (CCCP) or a low concentration (5 microM) of another protonophore, 3,3',4',5-tetrachlorosalicylanilide (TCS). The relative ineffectiveness of the former protonophore was caused by the proteose peptone and tryptone ingredients of the complex medium, since 5 microM completely prevented growth in their absence. The results are explained by a primary respiratory-linked proton efflux coupled to a secondary Na+/H+ antiport operating at alkaline pH. Evidence was seen for a role of Na+ in stimulating proton influx at alkaline pH, presumably via the pH homeostasis mechanism.  相似文献   

20.
Apical membrane H+ extrusion in the renal outer medullary collecting duct, inner stripe, is mediated by a Na(+)-independent H+ pump. To examine the regulation of this transporter, cell pH and cell Ca2+ were measured microfluorometrically in in vitro perfused tubules using 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein and fura-2, respectively. Apical membrane H+ pump activity, assayed as cell pH recovery from a series of acid loads (NH3/NH+4 prepulse) in the total absence of ambient Na+, initially occurred at a slow rate (0.06 +/- 0.02 pH units/min), which was not sufficient to account for physiologic rates of H+ extrusion. Over 15-20 min after the initial acid load, the rate of Na(+)-independent cell pH recovery increased to 0.63 +/- 0.09 pH units/min, associated with a steady-state cell pH greater than the initial pre-acid load cell pH. This pattern suggested an initial suppression followed by a delayed activation of the apical membrane H+ pump. Replacement of peritubular Na+ with choline or N-methyl-D-glucosamine resulted in an initial spike increase in cell Ca2+ followed by a sustained increase in cell Ca2+. The initial rate of Na(+)-independent cell pH recovery could be increased by elimination of the Na+ removal-induced sustained cell Ca2+ elevation by: (a) performing studies in the presence of 135 mM peritubular Na+ (1 mM peritubular amiloride used to inhibit basolateral membrane Na+/H+ antiport); (b) clamping cell Ca2+ low with dimethyl-BAPTA, an intracellular Ca2+ chelating agent; or (c) removal of extracellular Ca2+. Cell acidification induced a spike increase in cell Ca2+. The late acceleration of Na(+)-independent cell pH recovery was independent of Na+ removal and of the method used to acidify the cell, but was eliminated by prevention of the cell Ca2+ spike and markedly delayed by the microfilament-disrupting agent, cytochalasin B. This study demonstrates that peritubular Na+ removal results in a sustained elevation in cell Ca2+, which inhibits the apical membrane H+ pump. In addition, rapid cell acidification associated with a spike increase in cell Ca2+ leads to a delayed activation of the H+ pump. Thus, cell Ca2+ per se, or a Ca(2+)-activated pathway, can modulate H+ pump activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号