首页 | 官方网站   微博 | 高级检索  
     


Role of Na+ cycle in cell volume regulation of Mycoplasma gallisepticum.
Authors:M H Shirvan  S Schuldiner  and S Rottem
Affiliation:Department of Membrane and Ultrastructure Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
Abstract:The mechanism for the extrusion of Na+ from Mycoplasma gallisepticum cells was examined. Na+ efflux from cells was studied by diluting 22Na+-loaded cells into an isoosmotic NaCl solution and measuring the residual 22Na+ in the cells. Uphill 22Na+ efflux was found to be glucose dependent and linear with time over a 60-s period and showed almost the same rate in the pH range of 6.5 to 8.0. 22Na+ efflux was markedly inhibited by dicyclohexylcarbodiimide (DCCD, 10 microM), but not by the proton-conducting ionophores SF6847 (0.5 microM) or carbonyl cyanide m-chlorophenylhydrazone (CCCP, 10 microM) over the entire pH range tested. An ammonium diffusion potential and a pH gradient were created by diluting intact cells or sealed membrane vesicles of M. gallisepticum loaded with NH4Cl into a choline chloride solution. The imposed H+ gradient (inside acid) was not affected by the addition of either NaCl or KCl to the medium. Dissipation of the proton motive force by CCCP had no effect on the growth of M. gallisepticum in the pH range of 7.2 to 7.8 in an Na+-rich medium. Additionally, energized M. gallisepticum cells were stable in an isoosmotic NaCl solution, even in the presence of proton conductors, whereas nonenergized cells tended to swell and lyse. These results show that in M. gallisepticum Na+ movement was neither driven nor inhibited by the collapse of the electrochemical gradient of H+, suggesting that in this organism Na+ is extruded by an electrogenic primary Na+ pump rather than by an Na+-H+ exchange system energized by the proton motive force.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号