首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA polymerase zeta (Polzeta) and Rev1 contribute to the bypassing of DNA lesions, termed translesion DNA synthesis (TLS). Polzeta consists of two subunits, one encoded by REV3 (the catalytic subunit) and the other encoded by REV7. Rev1 acts as a deoxycytidyl transferase, inserting dCMP opposite lesions. Polzeta and Rev1 have been shown to operate in the same TLS pathway in the budding yeast Saccharomyces cerevisiae. Here, we show that budding yeast Polzeta and Rev1 form a complex and associate together with double-strand breaks (DSBs). As a component of the Polzeta-Rev1 complex, Rev1 plays a noncatalytic role in the association with DSBs. In budding yeast, the ATR-homolog Mec1 plays a central role in the DNA-damage checkpoint response. We further show that Mec1-dependent phosphorylation promotes the Polzeta-Rev1 association with DSBs. Rev1 association with DSBs requires neither the function of the Rad24 checkpoint-clamp loader nor the Rad6-Rad18-mediated ubiquitination of PCNA. Our results reveal a novel role of Mec1 in the localization of the Polzeta-Rev1 complex to DNA lesions and highlight a linkage of TLS polymerases to the checkpoint response.  相似文献   

2.
UV lesions in the template strand block the DNA replication machinery. Genetic studies of the yeast Saccharomyces cerevisiae have indicated the requirement of the Rad6-Rad18 complex, which contains ubiquitin-conjugating and DNA-binding activities, in the error-free and mutagenic modes of damage bypass. Here, we examine the contributions of the REV3, RAD30, RAD5, and MMS2 genes, all of which belong to the RAD6 epistasis group, to the postreplication repair of UV-damaged DNA. Discontinuities, which are formed in DNA strands synthesized from UV-damaged templates, are not repaired in the rad5Delta and mms2Delta mutants, thus indicating the requirement of the Rad5 protein and the Mms2-Ubc13 ubiquitin-conjugating enzyme complex in this repair process. Some discontinuities accumulate in the absence of RAD30-encoded DNA polymerase eta (Poleta) but not in the absence of REV3-encoded DNA Polzeta. We concluded that replication through UV lesions in yeast is mediated by at least three separate Rad6-Rad18-dependent pathways, which include mutagenic translesion synthesis by Polzeta, error-free translesion synthesis by Poleta, and postreplication repair of discontinuities by a Rad5-dependent pathway. We suggest that newly synthesized DNA possessing discontinuities is restored to full size by a "copy choice" type of DNA synthesis which requires Rad5, a DNA-dependent ATPase, and also PCNA and Poldelta. The possible roles of the Rad6-Rad18 and the Mms2-Ubc13 enzyme complexes in Rad5-dependent damage bypass are discussed.  相似文献   

3.
Wu D  Topper LM  Wilson TE 《Genetics》2008,178(3):1237-1249
Nonhomologous end joining (NHEJ) is an important DNA double-strand-break (DSB) repair pathway that requires three protein complexes in Saccharomyces cerevisiae: the Ku heterodimer (Yku70-Yku80), MRX (Mre11-Rad50-Xrs2), and DNA ligase IV (Dnl4-Lif1), as well as the ligase-associated protein Nej1. Here we use chromatin immunoprecipitation from yeast to dissect the recruitment and release of these protein complexes at HO-endonuclease-induced DSBs undergoing productive NHEJ. Results revealed that Ku and MRX assembled at a DSB independently and rapidly after DSB formation. Ligase IV appeared at the DSB later than Ku and MRX and in a strongly Ku-dependent manner. Ligase binding was extensive but slightly delayed in rad50 yeast. Ligase IV binding occurred independently of Nej1, but instead promoted loading of Nej1. Interestingly, dissociation of Ku and ligase from unrepaired DSBs depended on the presence of an intact MRX complex and ATP binding by Rad50, suggesting a possible role of MRX in terminating a NHEJ repair phase. This activity correlated with extended DSB resection, but limited degradation of DSB ends occurred even in MRX mutants with persistently bound Ku. These findings reveal the in vivo assembly of the NHEJ repair complex and shed light on the mechanisms controlling DSB repair pathway utilization.  相似文献   

4.
The Rad6-Rad18 ubiquitin-conjugating enzyme complex of Saccharomyces cerevisiae promotes replication through DNA lesions via three separate pathways that include translesion synthesis (TLS) by DNA polymerases zeta (Polzeta) and Poleta and postreplicational repair mediated by the Mms2-Ubc13 ubiquitin-conjugating enzyme and Rad5. Here we report our studies with a proliferating cell nuclear antigen (PCNA) mutation, pol30-119, which results from a change of the lysine 164 residue to arginine. It has been shown recently that following treatment of yeast cells with DNA-damaging agents, the lysine 164 residue of PCNA becomes monoubiquitinated in a Rad6-Rad18-dependent manner and that subsequently this PCNA residue is polyubiquitinated via a lysine 63-linked ubiquitin chain in an Mms2-Ubc13-, Rad5-dependent manner. PCNA is also modified by SUMO conjugation at the lysine 164 residue. Our genetic studies with the pol30-119 mutation show that in addition to conferring a defect in Polzeta-dependent UV mutagenesis and in Poleta-dependent TLS, this PCNA mutation inhibits postreplicational repair of discontinuities that form in the newly synthesized strand across from UV lesions. In addition, we provide evidence for the activation of the RAD52 recombinational pathway in the pol30-119 mutant and we infer that SUMO conjugation at the lysine 164 residue of PCNA has a role in suppressing the Rad52-dependent postreplicational repair pathway.  相似文献   

5.
Camptothecin (CPT) and related chemotherapeutic drugs induce formation of DNA Topoisomerase I (Top1) covalent or cleavage complexes (Top1ccs) that block leading-strand DNA synthesis and elicit DNA Double Stranded Breaks (DSB) during S phase. The Fanconi Anemia (FA) pathway is implicated in tolerance of CPT-induced DNA damage yet the mechanism of FA pathway activation by Top1 poisons has not been studied. We show here that the FA core complex protein FANCA and monoubiquitinated FANCD2 (an effector of the FA pathway) are rapidly mobilized to chromatin in response to CPT treatment in several human cancer cell lines and untransformed primary human dermal fibroblasts. FANCD2 depletion using siRNA leads to impaired recovery from CPT-induced inhibition or DNA synthesis, persistence of γH2AX (a DSB marker) and reduced cell survival following CPT treatment. The E3 ubiquitin ligase Rad18 is necessary for CPT-induced recruitment of FANCA and FANCD2 to chromatin. Moreover, Rad18-depletion recapitulates the DNA synthesis and survival defects of FANCD2-deficiency in CPT-treated cells. It is well-established that Rad18 promotes FA pathway activation and DNA damage tolerance in response to bulky DNA lesions via a mechanism involving PCNA monoubiquitination. In contrast, PCNA monoubiquitination is not involved in Rad18-mediated FA pathway activation or cell survival following acquisition of CPT-induced DSB. Moreover, while Rad18 is implicated in recombinational repair of DSB via an E3 ligase-independent mechanism, we demonstrate that Rad18 E3 ligase activity is essential for appropriate FA pathway activation and DNA damage tolerance after CPT treatment. Taken together, our results define a novel pathway of Rad18-dependent DSB repair that is dissociable from known Rad18-mediated DNA repair mechanisms based on its independence from PCNA ubiquitination and requirement for E3 ligase activity.  相似文献   

6.
Camptothecin (CPT) and related chemotherapeutic drugs induce formation of DNA topoisomerase I (Top1) covalent or cleavage complexes (Top1ccs) that block leading-strand DNA synthesis and elicit DNA Double Stranded Breaks (DSB) during S phase. The Fanconi Anemia (FA) pathway is implicated in tolerance of CPT-induced DNA damage yet the mechanism of FA pathway activation by Top1 poisons has not been studied. We show here that the FA core complex protein FANCA and monoubiquitinated FANCD2 (an effector of the FA pathway) are rapidly mobilized to chromatin in response to CPT treatment in several human cancer cell lines and untransformed primary human dermal fibroblasts. FANCD2 depletion using siRNA leads to impaired recovery from CPT-induced inhibition or DNA synthesis, persistence of γH2AX (a DSB marker) and reduced cell survival following CPT treatment. The E3 ubiquitin ligase Rad18 is necessary for CPT-induced recruitment of FANCA and FANCD2 to chromatin. Moreover, Rad18-depletion recapitulates the DNA synthesis and survival defects of FANCD2-deficiency in CPT-treated cells. It is well-established that Rad18 promotes FA pathway activation and DNA damage tolerance in response to bulky DNA lesions via a mechanism involving PCNA monoubiquitination. In contrast, PCNA monoubiquitination is not involved in Rad18-mediated FA pathway activation or cell survival following acquisition of CPT-induced DSB. Moreover, while Rad18 is implicated in recombinational repair of DSB via an E3 ligase-independent mechanism, we demonstrate that Rad18 E3 ligase activity is essential for appropriate FA pathway activation and DNA damage tolerance after CPT treatment. Taken together, our results define a novel pathway of Rad18-dependent DSB repair that is dissociable from known Rad18-mediated DNA repair mechanisms based on its independence from PCNA ubiquitination and requirement for E3 ligase activity.Key words: camptothecin, Rad18, topoisomerase I, double strand breaks, Fanconi anemia  相似文献   

7.
DNA double-strand breaks (DSBs) are critical lesions that can lead to cell death or chromosomal rearrangements. Rad51 is necessary for most mitotic and meiotic DSB repair events, although a number of RAD51-independent pathways exist. Previously, we described DSB repair in rad51Delta yeast diploids that was stimulated by a DNA region termed "facilitator of break-induced replication" (FBI) located approximately 30kb from the site of an HO-induced DSB. Here, we demonstrate that FBI is a large inverted DNA repeat that channels the repair of DSBs into the single-strand annealing-gross chromosomal rearrangements (SSA-GCR) pathway. Further, analysis of DSB repair in rad54Delta cells allowed us to propose that the SSA-GCR repair pathway is suppressed in the presence of Rad51p. Therefore, an additional role of Rad51 might be to protect eukaryotic genomes from instabilities by preventing chromosomal rearrangements.  相似文献   

8.
The ubiquitination of PCNA is an essential event in the operation of the DNA Damage Tolerance (DDT) pathway that is activated after DNA damage caused by UV or chemical agents during S-phase. This pathway allows the bypass of DNA damage by translesion synthesis that would otherwise cause replication fork stalling. PCNA is mono-ubiquitinated by Rad18-Rad6, and polyubiquitinated by Rad5-Ubc13/Uev1 in the DDT pathway. Mono-and polyubiquitination of PCNA are key processes in the translesion bypass and template switching sub-pathways of the DDT. DNA damage by IR causes DSBs, which trigger the DNA Damage Response (DDR). The ubiquitin ligase RNF8 has a critical role in the assembly of BRCA1 complexes at the DSBs in the DDR. We show that RNF8 readily mono-ubiquitinates PCNA in the presence of UbcH5c, and polyubiquitinates PCNA in the added presence of Ubc13/Uev1a. These reactions are the same as those performed by Rad18-Rad6 and Rad5-Ubc13. RNF8 depletion suppressed both UV and MNNG-stimulated mono-ubiquitination of PCNA, revealing that an RNF8-dependent pathway for PCNA ubiquitination is operative in vivo. These findings provide evidence that RNF8, a key E3 ligase in the DDR, may also play a role in the DDT.  相似文献   

9.
Bleomycins are small glycopeptide cancer chemotherapeutics that give rise to 3'-modified DNA double-strand breaks (DSBs). In Saccharomyces cerevisiae, DSBs are predominantly repaired by RAD52-dependent homologous recombination (HR) with some support by Yku70/Yku80 (KU)-dependent pathways. The main DSB repair function of KU is believed to be as part of the non-homologous end-joining (NHEJ) pathway, but KU also functions in a "chromosome healing" pathway that seals DSBs by de novo telomere addition. We report here that rad52Deltayku70Delta double mutants are considerably more bleomycin hypersensitive than rad52Deltalig4Delta cells that lack the NHEJ-specific DNA ligase 4. Moreover, the telomere-specific KU mutation yku80-135i also dramatically increases rad52Delta bleomycin hypersensitivity, almost to the level of rad52Deltayku80Delta. The results indicate that telomere-specific functions of KU play a more prominent role in the repair of bleomycin-induced damage than its NHEJ functions, which could have important clinical implications for bleomycin-based combination chemotherapies.  相似文献   

10.
11.
Nonhomologous end-joining (NHEJ) is the major mammalian DNA double-strand break (DSB) repair pathway of DSBs induced by DNA damaging agents. NHEJ is initiated by the recognition of DSBs by the DNA end-binding heterodimer, Ku, and the final step of DNA end-joining is accomplished by the XRCC4-DNA ligase IV complex. We demonstrate that Aprataxin and PNK-like factor (APLF), an endo/exonuclease with an FHA domain and unique zinc fingers (ZFs), interacts with both Ku and XRCC4-DNA ligase IV in human cells. The interaction of APLF with XRCC4-DNA ligase IV is FHA- and phospho-dependent, and is mediated by CK2 phosphorylation of XRCC4 in vitro. In contrast, APLF associates with Ku independently of the FHA and ZF domains, and APLF complexes with Ku at DNA ends. APLF undergoes ionizing radiation (IR) induced ATM-dependent hyperphosphorylation at serine residue 116, which is highly conserved across mammalian APLF homologues. We demonstrate further that depletion of APLF in human cells by siRNA is associated with impaired NHEJ. Collectively, these results suggest that APLF is an ATM target that is involved in NHEJ and facilitates DSB repair, likely via interactions with Ku and XRCC4-DNA ligase IV.  相似文献   

12.
REV1 and DNA Polymerase ζ (REV3 and REV7) play important roles in translesion DNA synthesis (TLS) in which DNA replication bypasses blocking lesions. REV1 and Polζ have also been implicated in promoting repair of DNA double-stranded breaks (DSBs). However, the mechanism by which these two TLS polymerases increase tolerance to DSBs is poorly understood. Here we demonstrate that full-length human REV1, REV3 and REV7 interact in vivo (as determined by co-immunoprecipitation studies) and together, promote homologous recombination repair. Cells lacking REV3 were hypersensitive to agents that cause DSBs including the PARP inhibitor, olaparib. REV1, REV3 or REV7-depleted cells displayed increased chromosomal aberrations, residual DSBs and sites of HR repair following exposure to ionizing radiation. Notably, cells depleted of DNA polymerase η (Polη) or the E3 ubiquitin ligase RAD18 were proficient in DSB repair following exposure to IR indicating that Polη-dependent lesion bypass or RAD18-dependent monoubiquitination of PCNA are not necessary to promote REV1 and Polζ-dependent DNA repair. Thus, the REV1/Polζ complex maintains genomic stability by directly participating in DSB repair in addition to the canonical TLS pathway.  相似文献   

13.
DNA ligase IV (Dnl4 in budding yeast) is a specialized ligase used in non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs). Although point and truncation mutations arise in the human ligase IV syndrome, the roles of Dnl4 in DSB repair have mainly been examined using gene deletions. Here, Dnl4 catalytic point mutants were generated that were severely defective in auto-adenylation in vitro and NHEJ activity in vivo, despite being hyper-recruited to DSBs and supporting wild-type levels of Lif1 interaction and assembly of a Ku- and Lif1-containing complex at DSBs. Interestingly, residual levels of especially imprecise NHEJ were markedly higher in a deletion-based assay with Dnl4 catalytic mutants than with a gene deletion strain, suggesting a role of DSB-bound Dnl4 in supporting a mode of NHEJ catalyzed by a different ligase. Similarly, next generation sequencing of repair joints in a distinct single-DSB assay showed that dnl4-K466A mutation conferred a significantly different imprecise joining profile than wild-type Dnl4 and that such repair was rarely observed in the absence of Dnl4. Enrichment of DNA ligase I (Cdc9 in yeast) at DSBs was observed in wild-type as well as dnl4 point mutant strains, with both Dnl4 and Cdc9 disappearing from DSBs upon 5′ resection that was unimpeded by the presence of catalytically inactive Dnl4. These findings indicate that Dnl4 can promote mutagenic end joining independently of its catalytic activity, likely by a mechanism that involves Cdc9.  相似文献   

14.
In yeast, Rad6-Rad18-dependent lesion bypass involves translesion synthesis (TLS) by DNA polymerases eta or zeta or Rad5-dependent postreplication repair (PRR) in which error-free replication through the DNA lesion occurs by template switching. Rad5 functions in PRR via its two distinct activities-a ubiquitin ligase that promotes Mms2-Ubc13-mediated K63-linked polyubiquitination of PCNA at its lysine 164 residue and a DNA helicase that is specialized for replication fork regression. Both these activities are important for Rad5's ability to function in PRR. Here we provide evidence for the requirement of Rad5 in TLS mediated by Polzeta. Using duplex plasmids carrying different site-specific DNA lesions-an abasic site, a cis-syn TT dimer, a (6-4) TT photoproduct, or a G-AAF adduct-we show that Rad5 is needed for Polzeta-dependent TLS. Rad5 action in this role is likely to be structural, since neither the inactivation of its ubiquitin ligase activity nor the inactivation of its helicase activity impairs its role in TLS.  相似文献   

15.
Fanconi anemia (FA) is a cancer susceptibility syndrome characterized by sensitivity to DNA-damaging agents. The FA proteins (FANCs) are implicated in DNA repair, although the precise mechanisms by which FANCs process DNA lesions are not fully understood. An epistatic relationship between the FA pathway and translesion synthesis (TLS, a post-replication DNA repair mechanism) has been suggested, but the basis for cross-talk between the FA and TLS pathways is poorly understood. We show here that ectopic overexpression of the E3 ubiquitin ligase Rad18 (a central regulator of TLS) induces DNA damage-independent mono-ubiquitination of proliferating cell nuclear antigen (PCNA) (a known Rad18 substrate) and FANCD2. Conversely, DNA damage-induced mono-ubiquitination of both PCNA and FANCD2 is attenuated in Rad18-deficient cells, demonstrating that Rad18 contributes to activation of the FA pathway. WT Rad18 but not an E3 ubiquitin ligase-deficient Rad18 C28F mutant fully complements both PCNA ubiquitination and FANCD2 activation in Rad18-depleted cells. Rad18-induced mono-ubiquitination of FANCD2 is not observed in FA core complex-deficient cells, demonstrating that Rad18 E3 ligase activity alone is insufficient for FANCD2 ubiquitylation. Instead, Rad18 promotes FA core complex-dependent FANCD2 ubiquitination in a manner that is secondary to PCNA mono-ubiquitination. Taken together, these results demonstrate a novel Rad18-dependent mechanism that couples activation of the FA pathway with TLS.  相似文献   

16.
DNA double strand breaks (DSB)s often require end processing prior to joining during their repair by non-homologous end joining (NHEJ). Although the yeast proteins, Pol4, a Pol X family DNA polymerase, and Rad27, a nuclease, participate in the end processing reactions of NHEJ, the mechanisms underlying the recruitment of these factors to DSBs are not known. Here we demonstrate that Nej1, a NHEJ factor that interacts with and modulates the activity of the NHEJ DNA ligase complex (Dnl4/Lif1), physically and functionally interacts with both Pol4 and Rad27. Notably, Nej1 and Dnl4/Lif1, which also interacts with both Pol4 and Rad27, independently recruit the end processing factors to in vivo DSBs via mechanisms that are additive rather than redundant. As was observed with Dnl4/Lif1, the activities of both Pol4 and Rad27 were enhanced by the interaction with Nej1. Furthermore, Nej1 increased the joining of incompatible DNA ends in reconstituted reactions containing Pol4, Rad27 and Dnl4/Lif1, indicating that the stimulatory activities of Nej1 and Dnl4/Lif1 are also additive. Together our results reveal novel roles for Nej1 in the recruitment of Pol4 and Rad27 to in vivo DSBs and the coordination of the end processing and ligation reactions of NHEJ.  相似文献   

17.
DNA polymerase zeta (Polzeta) participates in translesion DNA synthesis and is involved in the generation of the majority of mutations induced by DNA damage. The mechanisms that license access of Polzeta to the primer terminus and regulate the extent of its participation in genome replication are poorly understood. The Polzeta-dependent damage-induced mutagenesis requires monoubiquitination of proliferating cell nuclear antigen (PCNA) that is triggered by exposure to mutagens. We show that Polzeta contributes to DNA replication and causes mutagenesis not only in response to DNA damage but also in response to malfunction of normal replicative machinery due to mutations in replication genes. These replication defects lead to ubiquitination of PCNA even in the absence of DNA damage. Unlike damage-induced mutagenesis, the Polzeta-dependent spontaneous mutagenesis in replication mutants is reduced in strains defective in both ubiquitination and sumoylation of Lys164 of PCNA. Additionally, studies of a PCNA mutant defective for functional interactions with Polzeta, but not for monoubiquitination by the Rad6/Rad18 complex demonstrate a role for PCNA in regulating the mutagenic activity of Polzeta separate from its modification at Lys164.  相似文献   

18.
Non-homologous end joining (NHEJ) is the main repair pathway for DNA double-strand breaks (DSBs) in cells with limited 5′ resection. To better understand how overhang polarity of chromosomal DSBs affects NHEJ, we made site-specific 5′-overhanging DSBs (5′ DSBs) in yeast using an optimized zinc finger nuclease at an efficiency that approached HO-induced 3′ DSB formation. When controlled for the extent of DSB formation, repair monitoring suggested that chromosomal 5′ DSBs were rejoined more efficiently than 3′ DSBs, consistent with a robust recruitment of NHEJ proteins to 5′ DSBs. Ligation-mediated qPCR revealed that Mre11-Rad50-Xrs2 rapidly modified 5′ DSBs and facilitated protection of 3′ DSBs, likely through recognition of overhang polarity by the Mre11 nuclease. Next-generation sequencing revealed that NHEJ at 5′ DSBs had a higher mutation frequency, and validated the differential requirement of Pol4 polymerase at 3′ and 5′ DSBs. The end processing enzyme Tdp1 did not impact joining fidelity at chromosomal 5′ DSBs as in previous plasmid studies, although Tdp1 was recruited to only 5′ DSBs in a Ku-independent manner. These results suggest distinct DSB handling based on overhang polarity that impacts NHEJ kinetics and fidelity through differential recruitment and action of DSB modifying enzymes.  相似文献   

19.
Low levels of DNA ligases III and IV sufficient for effective NHEJ   总被引:1,自引:0,他引:1  
Cells of higher eukaryotes rejoin double strand breaks (DSBs) in their DNA predominantly by a non-homologous DNA end joining (NHEJ) pathway that utilizes the products of DNA-PKcs, Ku, LIG4, XRCC4, XLF/Cernunnos, Artemis as well as DNA polymerase lambda (termed D-NHEJ). Mutants with defects in these proteins remove a large proportion of DSBs from their genome utilizing an alternative pathway of NHEJ that operates as a backup (B-NHEJ). While D-NHEJ relies exclusively on DNA ligase IV, recent work points to DNA ligase III as a component of B-NHEJ. Here, we use RNA interference (RNAi) to further investigate the activity requirements for DNA ligase III and IV in the pathways of NHEJ. We report that 70-80% knock down of LIG3 expression has no detectable effect on DSB rejoining, either in D-NHEJ proficient cells, or in cells where D-NHEJ has been chemically or genetically compromised. Surprisingly, also LIG4 knock down has no effect on repair proficient cells, but inhibits DSB rejoining in a radiosensitive cell line with a hypomorphic LIG4 mutation that severely compromises its activity. The results suggest that complete coverage for D-NHEJ or B-NHEJ is afforded by very low ligase levels and demonstrate residual end joining by DNA ligase IV in cells of patients with mutations in LIG4.  相似文献   

20.
Rejoining of single- and double-strand breaks (DSBs) introduced in DNA during replication, recombination, and DNA damage is catalysed by DNA ligase enzymes. Eukaryotes possess multiple DNA ligase enzymes, each having distinct roles in cellular metabolism. Double-strand breaks in DNA, which can occur spontaneously in the cell or be induced experimentally by gamma-irradiation, represent one of the most serious threats to genomic integrity. Non-homologous end joining (NHEJ) rather than homologous recombination is the major pathway for repair of DSBs in organisms with complex genomes, including humans and plants. DNA ligase IV in Saccharomyces cerevisiae and humans catalyses the final step in the NHEJ pathway of DSB repair. In this study we identify an Arabidopsis thaliana homologue (AtLIG4) of human and S. cerevisiae DNA ligase IV which is shown to encode an ATP-dependent DNA ligase with a theoretical molecular mass of 138 kDa and 48% similarity in amino-acid sequence to the human DNA ligase IV. Yeast two-hybrid analysis demonstrated a strong interaction between A. thaliana DNA ligase IV and the A. thaliana homologue of the human DNA ligase IV-binding protein XRCC4. This interaction is shown to be mediated via the tandem BRCA C-terminal domains of A. thaliana DNA ligase IV protein. Expression of AtLIG4 is induced by gamma-irradiation but not by UVB irradiation, consistent with an in vivo role for the A. thaliana DNA ligase IV in DSB repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号