首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Mouse vaginal epithelial cells were isolated from intact 21-day-old BALB/cCrgl mice and cultured in a serum-free medium (SF20: basal medium supplemented with insulin, epidermal growth factor, transferrin, and bovine serum albumin—fraction V) to examine the proliferation, differentiation, and specificity of estrogen-induced growth retardation in vitro. Histologic and ultrastructural studies showed that vaginal epithelial cells undergo differentiative changes in vitro in the absence of estrogen, and that these changes are similar to those induced in vivo by estrogen. Addition of 17β-estradiol inhibited cellular proliferation in a dose-dependent manner. Whereas other estrane derivatives (17α-estradiol and estriol) also significantly retarded cellular proliferation, cholesterol, testosterone, and progesterone had no effect. Keoxifene, an antiestrogen, significantly reversed estrogen-induced growth inhibition, resulting in proliferation of estrogen-treated cells equivalent to that of the untreated control. The results suggest that both proliferation and differentiation of prepubertal mouse vaginal epithelial cells in vitro are estrogen-independent, and that the growth inhibition is a specific estrogen-induced response. This work was supported by grants CA-05388 and CA-09041 from the National Institutes of Health, Bethesda, MD.  相似文献   

3.
Serum-free culture of epidermal cell suspensions from neonatal skin of mice of strain C57BL/10JHir (B10) showed that α-melanocyte-stimulating hormone (α-MSH) was involved in regulating the differentiation of melanocytes by inducing tyrosinase activity, melanosome formation, and dendritogenesis. Dibutyryl adenosine 3′:5′-cyclic monophosphate (DB-cAMP) similarly induced the differentiation of melanocytes. On the other hand, DBcAMP induced the proliferation of epidermal melanocytes in culture in the presence of keratinocytes. Basic fibroblast growth factor (bFGF) was also shown to stimulate the sustained proliferation of undifferentiated melanoblasts in the presence of DBcAMP and keratinocytes. These results suggest that the proliferation and differentiation of mouse epidermal melanoblasts and melanocytes in culture are regulated by the three factors; namely, cAMP, bFGF, and keratinocyte-derived factors. Moreover, serum-free primary culture of mouse epidermal melanocytes derived from B10 congenic mice, which carry various coat color genes, showed that the coat color genes were involved in regulating the proliferation and differentiation of mouse epidermal melanocytes by controlling the proliferative rate, melanosome formation and maturation, and melanosome distribution.  相似文献   

4.
Serum-free culture of epidermal cell suspensions from neonatal skin of mice of strain C57BL/10JHir (B10) showed that alpha-melanocyte-stimulating hormone (alpha-MSH) was involved in regulating the differentiation of melanocytes by inducing tyrosinase activity, melanosome formation, and dendritogenesis. Dibutyryl adenosine 3':5'-cyclic monophosphate (DBcAMP) similarly induced the differentiation of melanocytes. On the other hand, DBcAMP induced the proliferation of epidermal melanocytes in culture in the presence of keratinocytes. Basic fibroblast growth factor (bFGF) was also shown to stimulate the sustained proliferation of undifferentiated melanoblasts in the presence of DBcAMP and keratinocytes. These results suggest that the proliferation and differentiation of mouse epidermal melanoblasts and melanocytes in culture are regulated by the three factors; namely, cAMP, bFGF, and keratinocyte-derived factors. Moreover, serum-free primary culture of mouse epidermal melanocytes derived from B10 congenic mice, which carry various coat color genes, showed that the coat color genes were involved in regulating the proliferation and differentiation of mouse epidermal melanocytes by controlling the proliferative rate, melanosome formation and maturation, and melanosome distribution.  相似文献   

5.
Epidermal stem cells maintain development and homeostasis of mammalian epidermis throughout life. However, the molecular mechanisms involved in the proliferation and differentiation of epidermal stem cells are far from clear. In this study, we investigated the effects of Wnt3a and Wnt/β-catenin signaling on proliferation and differentiation of human fetal epidermal stem cells. We found both Wnt3a and active β-catenin, two key members of the Wnt/β-catenin signaling, were expressed in human fetal epidermis and epidermal stem cells. In addition, Wnt3a protein can promote proliferation and inhibit differentiation of epidermal stem cells in vitro culture. Our results suggest that Wnt/β-catenin signaling plays important roles in human fetal skin development and homeostasis, which also provide new insights on the molecular mechanisms of oncogenesis in human epidermis.  相似文献   

6.
Repeated exposure of ultraviolet radiation B (UVB) on the dorsal skin of hairless mice induces the development of pigmented spots long after its cessation. The proliferation and differentiation of epidermal melanocytes in UVB-induced pigmented spots are greatly increased, and those effects are regulated by keratinocytes rather than by melanocytes. However, it remains to be resolved what factor(s) derived from keratinocytes are involved in regulating the proliferation and differentiation of epidermal melanocytes. In this study, primary melanoblasts (c. 80%) and melanocytes (c. 20%) derived from epidermal cell suspensions of mouse skin were cultured in a basic fibroblast growth factor-free medium supplemented with granulocyte-macrophage colony-stimulating factor (GM-CSF). GM-CSF induced the proliferation and differentiation of melanocytes in those keratinocyte-depleted cultures. Moreover, an antibody to GM-CSF inhibited the proliferation of melanoblasts and melanocytes from epidermal cell suspensions derived from the pigmented spots of UV-irradiated mice, but not from control mice. Further, the GM-CSF antibody inhibited the proliferation and differentiation of melanocytes co-cultured with keratinocytes derived from UV-irradiated mice, but not from control mice. The quantity of GM-CSF secreted from keratinocytes derived from the pigmented spots of UV-irradiated mice was much greater than that secreted from keratinocytes derived from control mice. Moreover, immunohistochemistry revealed the expression of GM-CSF in keratinocytes derived from the pigmented spots of skin in UV-irradiated mice, but not from normal skin in control mice. These results suggest that GM-CSF is one of the keratinocyte-derived factors involved in regulating the proliferation and differentiation of mouse epidermal melanocytes from UVB-induced pigmented spots.  相似文献   

7.
Epidermal growth factor is an important element in maintaining keratinocyte proliferation and maturation. To evaluate its effect on keratinocyte growth in vitro, human foreskins were cultured. The epidermal keratinocyte growth in culture was separated into two stages by a conditional medium: the proliferation stage, in which the cells were maintained in a monolayer; and the differentiation stage, in which the cells grew to stratification and keratinization. The keratinocytes were cultured in various concentrations of epidermal growth factor, and their morphology and growth behavior were closely observed. Our results demonstrated that cultured keratinocytes grew in a confluent layer under the influence of epidermal growth factor. In contrast, in a culture without epidermal growth factor, the proliferation rate of cultured keratinocytes slowed down and eventually the cells stopped growing. During serum stimulation, with or without additional exogenous epidermal growth factor, the cultured keratinocytes grew continuously to the normal terminal differentiation. Under this two-stage culture model, the cultured keratinocytes could grow into an intact sheet of graftable epidermis.  相似文献   

8.
Repeated exposure of ultraviolet radiation B (UVB) on the dorsal skin of hairless mice induces the development of pigmented spots long after its cessation. The proliferation and differentiation of epidermal melanocytes in UVB‐induced pigmented spots are greatly increased, and those effects are regulated by keratinocytes rather than by melanocytes. However, it remains to be resolved what factor(s) derived from keratinocytes are involved in regulating the proliferation and differentiation of epidermal melanocytes. In this study, primary melanoblasts (c. 80%) and melanocytes (c. 20%) derived from epidermal cell suspensions of mouse skin were cultured in a basic fibroblast growth factor‐free medium supplemented with granulocyte‐macrophage colony‐stimulating factor (GM‐CSF). GM‐CSF induced the proliferation and differentiation of melanocytes in those keratinocyte‐depleted cultures. Moreover, an antibody to GM‐CSF inhibited the proliferation of melanoblasts and melanocytes from epidermal cell suspensions derived from the pigmented spots of UV‐irradiated mice, but not from control mice. Further, the GM‐CSF antibody inhibited the proliferation and differentiation of melanocytes co‐cultured with keratinocytes derived from UV‐irradiated mice, but not from control mice. The quantity of GM‐CSF secreted from keratinocytes derived from the pigmented spots of UV‐irradiated mice was much greater than that secreted from keratinocytes derived from control mice. Moreover, immunohistochemistry revealed the expression of GM‐CSF in keratinocytes derived from the pigmented spots of skin in UV‐irradiated mice, but not from normal skin in control mice. These results suggest that GM‐CSF is one of the keratinocyte‐derived factors involved in regulating the proliferation and differentiation of mouse epidermal melanocytes from UVB‐induced pigmented spots.  相似文献   

9.
10.
In epidermis, Ras can influence proliferation and differentiation; however, regulators of epidermal Ras function are not fully characterized, and Ras effects on growth and differentiation are controversial. EGF induced Ras activation in epidermal cells along with phosphorylation of the multisubstrate docking protein Gab1 and its binding to SHP-2. Expression of mutant Gab1Y627F deficient in SHP-2 binding or dominant-negative SHP-2C459S reduced basal levels of active Ras and downstream MAPK proteins and initiated differentiation. Differentiation triggered by both Gab1Y627F and SHP-2C459S could be blocked by coexpression of active Ras, consistent with Gab1 and SHP-2 action upstream of Ras in this process. To study the role of Gab1 and SHP-2 in tissue, we generated human epidermis overexpressing active Gab1 and SHP-2. Both proteins stimulated proliferation. In contrast, Gab1Y627F and SHP-2C459S inhibited epidermal proliferation and enhanced differentiation. Consistent with a role for Gab1 and SHP-2 in sustaining epidermal Ras/MAPK activity, Gab1-/- murine epidermis displayed lower levels of active Ras and MAPK with postnatal Gab1-/- epidermis, demonstrating the hypoplasia and enhanced differentiation seen previously with transgenic epidermal Ras blockade. These data provide support for a Ras role in promoting epidermal proliferation and opposing differentiation and indicate that Gab1 and SHP-2 promote the undifferentiated epidermal cell state by facilitating Ras/MAPK signaling.  相似文献   

11.
Protein tyrosine phosphatase-interacting protein 51 (PTPIP51) expression was analyzed in proliferating and differentiating human myogenic cells cultured in vitro. Satellite cell cultures derived from four different individuals were used in this study. To analyze the expression of PTPIP51, myoblasts were cultured under conditions promoting either proliferation or differentiation. In addition, further differentiation of already-differentiated myobtubes was inhibited by resubmitting the cells to conditions promoting proliferation. PTPIP51 protein and mRNA were investigated in samples taken at defined time intervals by immunostaining, immunoblotting, in situ hybridization, and PCR. Image analyses of fluorescence immunostainings were used to quantify PTPIP51 in cultured myoblasts and myotubes. Myoblasts grown in the presence of epidermal and fibroblast growth factors (EGF and FGF), both promoting proliferation, expressed PTPIP51 on a basic level. Differentiation to multinuclear myotubes displayed a linear increase in PTPIP51 expression. The rise in PTPIP51 protein was paralleled by an augmented expression of muscle-specific proteins, namely, sarcoplasmic reticulum Ca2+ ATPase and myosin heavy-chain protein, both linked to a progressive state of myotubal differentiation. This differentiation-induced increase in PTPIP51 was partly reversible by resubmission of differentiated myotubes to conditions boosting proliferation. The results clearly point toward a strong association between PTPIP51 expression and differentiation in human muscle cells. (J Histochem Cytochem 57:425–435, 2009)  相似文献   

12.
Interleukin (IL)-1alpha is one of the important cytokines involved in regulating immunological reactions in the mouse skin. However, it is not known whether IL-1alpha regulates the proliferation and differentiation of mouse epidermal melanocytes. In this study, to investigate the role of IL-1alpha in the regulation of the proliferation and differentiation of mouse epidermal melanocytes, IL-1alpha was supplemented to serum-free primary cultures of epidermal cell suspensions from the initiation of the primary culture (keratinocytes and melanoblasts-melanocytes) as well as to pure cultures of melanoblasts-melanocytes (keratinocyte-depleted cultures, after 14 days), and its effect was tested. IL-1alpha inhibited the proliferation of undifferentiated melanoblasts irrespective of the presence or absence of keratinocytes, whereas the cytokine inhibited the proliferation of differentiated melanocytes only in the presence of keratinocytes. Moreover, IL-1alpha induced the differentiation of melanocytes and, in addition, stimulated tyrosinase activity, melanin synthesis, and dendritogenesis of melanocytes irrespective of the presence or absence of keratinocytes. These results suggest that IL-1alpha is involved in inhibiting the proliferation of neonatal murine epidermal melanoblasts and in stimulating the differentiation, melanogenesis, and dendritogenesis of melanocytes. The results also suggest that IL-1alpha inhibits the proliferation of differentiated melanocytes in cooperation with keratinocyte-derived factors.  相似文献   

13.
The epidermal compartment is complex and organized into several strata composed of keratinocytes (KCs), including basal, spinous, granular, and cornified layers. The continuous process of self-renewal and barrier formation is dependent on a homeostatic balance achieved amongst KCs involving proliferation, differentiation, and cell death. To determine genes responsible for initiating and maintaining a cornified epidermis, organotypic cultures comprised entirely of stratified KCs creating epidermal equivalents (EE) were raised from a submerged state to an air/liquid (A/L) interface. Compared to the array profile of submerged cultures containing KCs predominantly in a proliferative (relatively undifferentiated) state, EEs raised to an A/L interface displayed a remarkably consistent and distinct profile of mRNAs. Cultures lifted to an A/L interface triggered the induction of gene groups that regulate proliferation, differentiation, and cell death. Next, differentially expressed microRNAs (miRNAs) and long non-coding (lncRNA) RNAs were identified in EEs. Several differentially expressed miRNAs were validated by qRT-PCR and Northern blots. miRNAs 203, 205 and Let-7b were up-regulated at early time points (6, 18 and 24 h) but down-regulated by 120 h. To study the lncRNA regulation in EEs, we profiled lncRNA expression by microarray and validated the results by qRT-PCR. Although the differential expression of several lncRNAs is suggestive of a role in epidermal differentiation, their biological functions remain to be elucidated. The current studies lay the foundation for relevant model systems to address such fundamentally important biological aspects of epidermal structure and function in normal and diseased human skin.  相似文献   

14.
Earlier work has shown that epidermal cells contain a peptide, pyroGlu-Glu-Asp-Ser-GlyOH, that induces a moderate but long-lasting inhibition of epidermal cell proliferation when given at low (picomol) doses ip in vivo and in vitro. In the present study, the epidermal pentapeptide was applied topically to the back skin of hairless mice at different concentrations and in a water-miscible cream. A single topical application of either high (0.25% wt/wt) or low (0.004% or 0.02% wt/wt) doses of the pentapeptide was followed by oscillations in epidermal DNA synthesis and G2-M cell flux (mitotic rate). In general, epidermal cell proliferation was inhibited during the first 10-day period after treatment with the two lower doses, while the highest concentration of pentapeptide (0.25%) stimulated epidermal cell proliferation. In spite of the effects on epidermal cell proliferation the size of the epidermal cell population in the treated area (number of nucleated cells and epidermal thickness) showed no corresponding alterations. The results could imply that the epidermal pentapeptide modifies epidermal cell proliferation and terminal differentiation in such a way that the two are balance with each other.  相似文献   

15.
Objective: The study of human preadipocytes is hampered by the limited availability of adipose tissue and low yield of cell preparation. Proliferation of preadipocytes using common protocols, including fetal bovine serum (FBS), results in a markedly reduced differentiation capacity. Therefore, we were interested in developing an improved culture system that allows the proliferation of human preadipocytes without loss of differentiation capacity. Research Methods and Procedures: Adipose tissue samples were taken from subjects undergoing elective abdominal surgery. Cells were seeded at various densities and cultured using different formulations of proliferation media including factors such as fibroblast growth factor‐2 (basic fibroblast growth factor), epidermal growth factor, insulin, and FBS either alone or in combination. Cells were counted and induced to differentiate after confluence. After complete differentiation, cells were harvested, and glycerol‐3‐phosphate dehydrogenase activity was measured. Cells were subcultured for up to five passages. Results: The proliferation medium with 4 growth factors (PM4), consisting of 2.5% FBS, 10 ng/mL epidermal growth factor, 1 ng/mL basic fibroblast growth factor, and 8.7 µM insulin, resulted in lower doubling times at all seeding densities tested (0.05 × 104 to 1.5 × 104) compared with medium supplemented with 10% FBS. In contrast to cells in FBS medium, cells grown with PM4 medium retained full differentiation rate (glycerol‐3‐phosphate dehydrogenase activity, 493 ± 215 vs. 41 ± 17 mU/mg, p < 0.01). Differentiation capacity was fully retained at least for up to three passages in PM4 medium. Discussion: The use of PM4 medium results in substantial proliferation of human preadipocytes with preserved differentiation capacity. This novel technique represents a valuable tool for the study of human adipose tissue development and function starting from small samples.  相似文献   

16.
Mouse epidermal melanoblasts/melanocytes preferentially proliferated from disaggregated epidermal cell suspensions derived from newborn mouse skin in a serum-free melanoblast/melanocyte-proliferation medium supplemented with dibutyryl adenosine 3':5'-cyclic monophosphate (DBcAMP) and/or basic fibroblast growth factor (bFGF). Leukemia inhibitory factor (LIF) supplemented to the medium from initiation of primary culture increased the proliferation of melanoblasts or melanocytes as well as the differentiation of melanocytes. Pure cultured primary melanoblasts or melanocytes were further cultured with the medium supplemented with LIF from 14 days (keratinocyte depletion). LIF stimulated the proliferation of melanoblasts or melanocytes as well as the differentiation of melanocytes in the absence of keratinocytes. Moreover, anti-LIF antibody supplemented to the medium from initiation of primary culture inhibited the proliferation of melanoblasts or melanocytes as well as the differentiation of melanocytes. These results suggest that LIF is one of the keratinocyte-derived factors involved in regulating the proliferation and differentiation of neonatal mouse epidermal melanocytes in culture in cooperation with cAMP elevator and bFGF.  相似文献   

17.
Jarid2 is required for the genomic recruitment of the polycomb repressive complex-2 (PRC2) in embryonic stem cells. However, its specific role during late development and adult tissues remains largely uncharacterized. Here, we show that deletion of Jarid2 in mouse epidermis reduces the proliferation and potentiates the differentiation of postnatal epidermal progenitors, without affecting epidermal development. In neonatal epidermis, Jarid2 deficiency reduces H3K27 trimethylation, a chromatin repressive mark, in epidermal differentiation genes previously shown to be targets of the PRC2. However, in adult epidermis Jarid2 depletion does not affect interfollicular epidermal differentiation but results in delayed hair follicle (HF) cycling as a consequence of decreased proliferation of HF stem cells and their progeny. We conclude that Jarid2 is required for the scheduled proliferation of epidermal stem and progenitor cells necessary to maintain epidermal homeostasis.  相似文献   

18.
Earlier work has shown that epidermal cells contain a peptide, pyroGlu-Glu-Asp-Ser-GlyOH, that induces a moderate but long-lasting inhibition of epidermal cell proliferation when given at low (picomol) doses ip in vivo and in vitro. In the present study, the epidermal pentapeptide was applied topically to the back skin of hairless mice at different concentrations and in a water-miscible cream. A single topical application of either high (0.25% wt/wt) or low (0.004% or 0.02% wt/ wt) doses of the pentapeptide was followed by oscillations in epidermal DNA synthesis and G2-M cell flux (mitotic rate). In general, epidermal cell proliferation was inhibited during the first 10-day period after treatment with the two lower doses, while the highest concentration of pentapeptide (0.25%) stimulated epidermal cell proliferation. In spite of the effects on epidermal cell proliferation the size of the epidermal cell population in the treated area (number of nucleated cells and epidermal thickness) showed no corresponding alterations. The results could imply that the epidermal pentapeptide modifies epidermal cell proliferation and terminal differentiation in such a way that the two are balance with each other.  相似文献   

19.
Functional studies of the canonical Bone Morphogenetic Protein (BMP) signalling pathway in human epidermal keratinocytes have been limited to the immortalized and p53-mutated HaCaT cells and are primarily dependent on BMP6 treatment in mouse epidermal keratinocytes. Despite these insightful analyses, the molecular mechanism underlying the role of BMP signalling in the precise balance between growth arrest and terminal differentiation of keratinocytes still remains not clearly defined. The current study first investigated the hitherto uncharacterized status and functions of BMP signalling in normal human keratinocytes by using three independent strains of primary interfollicular epidermal keratinocytes. Then we provided data demonstrating the role of BMP2 compared to BMP6 in the inhibition of growth and induction of subsequent terminal differentiation of these cells. A second relevant finding is based on the clonal analysis of colony types present in untreated and BMP2/6-treated cultures in absence of EGF. BMP treatment results in the clonal transition from proliferative to abortive colonies, suggesting that BMP signalling most likely inhibits stem cell proliferation and triggers cell cycle exit from transit amplifying cells. Third, we showed evidence that, of the three members of the Cip/Kip family of cyclin-dependent kinase inhibitors, only p57(Kip2) and p21(Cip1) have a BMP2/6-induced expression. One mechanism of inhibition of cell proliferation involves p57(Kip2) as an immediate early response, in contradistinction with p21(Cip1) which largely depends on de novo protein synthesis for its effect to proceed. All together, these results clarify the BMP signalling status in normal primary human keratinocytes and support a new mechanism of inhibition of the proliferation of interfollicular epidermal keratinocytes coupled with induction of their terminal differentiation following BMP2 or BMP6 addition.  相似文献   

20.
Multi parameter flow cytometrical assays permit simultaneous assessment of proliferation, differentiation, and inflammation parameters. In this study, the validation of TO-PRO-3 iodide (TP3) compared to propidium iodide (PI) and DE-K10 compared to RKSE60 were evaluated in tape stripping induced hyperproliferation. No occlusion, Duoderm (intermediate occlusion) and Blenderm (maximal occlusion) were used as a model to evaluate the effect of occlusion on epidermal regeneration. Proliferation in the keratin 10-negative compartment measured with TP3 proved to be a good approximation of proliferation measured with PI. Other epidermal subpopulations (keratin 10-dim and -bright cells) did not make a relevant contribution to hyperproliferation. DE-K10 is probable more sensitive than RKSE60 to distinguish populations that differ in degree of differentiation. Occlusion of tape stripped skin resulted in decreased proliferation and increased differentiation. This effect was most pronounced with maximal occlusion. This study showed that occlusion is a therapy, which realises normalisation of hyperproliferative skin disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号