首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
All mammals have 50-100 μM mannose in their blood. However, the source of the dynamic pool of mannose in blood is unknown. Most of it is thought to be derived from glucose in the cells. We studied mannose uptake and release by various cell types. Interestingly, our results show that mannose taken up by the cells through transporters is handled differently from the mannose released within the cells due to glycan processing of protein-bound oligosaccharides. Although more than 95% of incoming mannose is catabolized, most of the mannose released by intracellular processing is expelled from the cells as free mannose predominantly via a nocodazole-sensitive sugar transporter. Under physiological conditions, incoming mannose is more accessible to hexokinase, whereas mannose released within the cells is protected from HK and therefore has a different fate. Our data also suggest that generation of free mannose due to the processing of glycoconjugates composed of glucose-derived mannose and its efflux from the cells can account for most of the mannose found in blood and its steady state maintenance.  相似文献   

2.
锌酵母中酵母甘露多糖组分的特征和结构   总被引:4,自引:0,他引:4  
本文研究从锌酵母中分离出的酵母甘露多糖XP的特征和结构。XP经全水解和^13CNMR谱显示除甘露糖基外,还有少量L-鼠李糖基和甲氧基。甲基化分析、过碘酸盐氧化、Smith降解、乙酰解和部分酸水解显示XP的主链是1→6连接的甘露糖,侧链是1→2连接的甘露糖。^1H及^13C NMR谱表明所有糖苷键均为α型,结合元素分析XP基本是酵母甘露多糖和蛋白质以及锌的络合物。  相似文献   

3.
Softening of the flesh and the rise in ethylene evolution and respiration associated with ripening in pear (Pyrus communis L.) fruit was delayed when mannose was vacuum infiltrated into intact fruit. The extent of delay could be modified by altering the concentration or the volume of mannose applied to the fruit. Inhibition of ripening was associated with phosphorylation of mannose to mannose 6-phosphate (M6P), and accumulation of M6P was associated with lowered levels of inorganic phosphate (Pi), glucose 6-phosphate (G6P), and ATP in the fruit tissue. Subsequently, however, as the M6P was metabolized, the levels of Pi, G6P, and ATP increased and ripening processes were concomitantly released from inhibition. Hence, the degree of inhibition by mannose or the release from inhibition was related to the level of M6P in the fruit and its rate of metabolism. The data provide correlative evidence to support a view that one inhibitory effect of mannose is depletion of Pi in the cell as a result of phosphorylation of mannose to M6P. Inhibition of ripening by mannose was not alleviated by co-application of glucose as a competitive substrate for the hexokinase(s), or by Pi, presumably the depleted metabolite. Also, incubation of tissue disks with M6P resulted in inhibition of ethylene production and respiration. The structural analogs of mannose, glucosamine, and 2-deoxyglucose, which have been shown to mimic mannose action in several plant tissues, did not cause inhibition of ripening of pear fruit comparable with that associated with mannose. Both analogs stimulated respiration, and glucosamine caused only a small inhibition of softening and ethylene evolution. Another mannose analog, α-methylmannoside, did inhibit fruit ripening though to a lesser extent than mannose. Its influence was also associated with accumulation of M6P and a decrease of Pi levels. We conclude that the mannose effect may, in part, be due to M6P toxicity, as well as by depletion of Pi.  相似文献   

4.
Current evidence suggests that extracellular mannose can be transported intracellularly and utilized for glycoprotein synthesis; however, the identity and the functional characteristics of the transporters of mannose are controversial. Although the glucose transporters are capable of transporting mannose, it has been postulated that the entry of mannose in mammalian cells is mediated by a transporter that is insensitive to glucose [Panneerselvam, K., and Freeze, H. (1996) J. Biol. Chem. 271, 9417-9421] or by a transporter induced by cell treatment with metformin [Shang, J., and Lehrman, M. A. (2004) J. Biol. Chem. 279, 9703-9712]. We performed a detailed analysis of the uptake of mannose in normal human erythrocytes and in leukemia cell line HL-60. Short uptake assays allowed the identification of a single functional activity involved in mannose uptake in both cell types, with a K(m) for transport of 6 mM. Transport was inhibited in a competitive manner by classical glucose transporter substrates. Similarly, the glucose transporter inhibitors cytochalasin B, genistein, and myricetin inhibited mannose transport by 100%. Using long uptake experiments, we identified a second, high-affinity component associated with the intracellular trapping of mannose in the HL-60 cells that is not directly involved in the transport of mannose via the glucose transporters. Thus, the transport of mannose via glucose transporters is a process which is kinetically and biologically separable from its intracellular trapping. A general survey of human cells revealed that mannose uptake was entirely blocked by concentrations of cytochalasin B that obliterates the activity of the glucose transporters. The transport and inhibition data demonstrate that extracellular mannose, whose physiological concentration is in the micromolar range, enters cells in the presence of physiological concentrations of glucose. Overall, our data indicate that transport through the glucose transporter is the main mechanism by which human cells acquire mannose.  相似文献   

5.
Lactobacillus plantarum is a frequently encountered inhabitant of the human intestinal tract, and some strains are marketed as probiotics. Their ability to adhere to mannose residues is a potentially interesting characteristic with regard to proposed probiotic features such as colonization of the intestinal surface and competitive exclusion of pathogens. In this study, the variable capacity of 14 L. plantarum strains to agglutinate Saccharomyces cerevisiae in a mannose-specific manner was determined and subsequently correlated with an L. plantarum WCFS1-based genome-wide genotype database. This led to the identification of four candidate mannose adhesin-encoding genes. Two genes primarily predicted to code for sortase-dependent cell surface proteins displayed a complete gene-trait match. Their involvement in mannose adhesion was corroborated by the finding that a sortase (srtA) mutant of L. plantarum WCFS1 lost the capacity to agglutinate S. cerevisiae. The postulated role of these two candidate genes was investigated by gene-specific deletion and overexpression in L. plantarum WCFS1. Subsequent evaluation of the mannose adhesion capacity of the resulting mutant strains showed that inactivation of one candidate gene (lp_0373) did not affect mannose adhesion properties. In contrast, deletion of the other gene (lp_1229) resulted in a complete loss of yeast agglutination ability, while its overexpression quantitatively enhanced this phenotype. Therefore, this gene was designated to encode the mannose-specific adhesin (Msa; gene name, msa) of L. plantarum. Domain homology analysis of the predicted 1,000-residue Msa protein identified known carbohydrate-binding domains, further supporting its role as a mannose adhesin that is likely to be involved in the interaction of L. plantarum with its host in the intestinal tract.  相似文献   

6.
Comitin is a 24 kDa actin-binding protein from Dictyostelium discoideum that is located primarily on Golgi and vesicle membranes. We have probed the molecular basis of comitin's interaction with both actin and membranes using a series of truncation mutants obtained by expressing the appropriate cDNA in Escherichia coli. Comitin dimerizes in solution; its principle actin-binding activity is located between residues 90 and 135. The N-terminal 135 'core' residues of comitin contain a 3-fold sequence repeat that is homologous to several monocotyledon lectins and which retains key residues that determine these lectins' three-dimensional structure and mannose binding. These repeats of comitin appear to mediate its interaction with mannose residues in glycoproteins or glycolipids on the cytoplasmic surface of membrane vesicles from D.discoideum, and comitin can be released from membranes with mannose. Our data indicate that comitin binds to vesicle membranes via mannose residues and, by way of its interaction with actin, links these membranes to the cytoskeleton.  相似文献   

7.
In addition to soluble acid hydrolases, many nonlysosomal proteins have been shown to bear mannose 6-phosphate (Man-6-P) residues. Quantification of the extent of mannose phosphorylation and the relevance to physiological function, however, remain poorly defined. In this study, we investigated the mannose phosphorylation status of leukemia inhibitory factor (LIF), a previously identified high affinity ligand for the cation-independent mannose 6-phosphate receptor (CI-MPR), and we analyzed the effects of this modification on its secretion and uptake in cultured cells. When media from LIF-overexpressing cells were fractionated using a CI-MPR affinity column, 35-45% of the total LIF molecules were bound and specifically eluted with free Man-6-P thus confirming LIF as a bona fide Man-6-P-modified protein. Surprisingly, mass spectrometric analysis of LIF glycopeptides enriched on the CI-MPR column revealed that all six N-glycan sites could be Man-6-P-modified. The relative utilization of these sites, however, was not uniform. Analysis of glycan-deleted LIF mutants demonstrated that loss of glycans bearing the majority of Man-6-P residues leads to higher steady-state levels of secreted LIF. Using mouse embryonic stem cells, we showed that the mannose phosphorylation of LIF mediates its internalization thereby reducing extracellular levels and stimulating embryonic stem cell differentiation. Finally, immunofluorescence experiments indicate that LIF is targeted directly to lysosomes following its biosynthesis, providing another mechanism whereby mannose phosphorylation serves to control extracellular levels of LIF. Failure to modify LIF in the context of mucolipidosis II and its subsequent accumulation in the extracellular space may have important implications for disease pathogenesis.  相似文献   

8.
When pig liver microsomal preparations were incubated with GDP-[14C]mannose, 10–40% of the 14C was transferred to mannolipid and 1–3% to mannoprotein. The transfer to mannolipid was readily reversible and GDP was one of the products of the reaction. It was possible to reverse the reaction by adding excess of GDP and to show the incorporation of [14C]GDP into GDP-mannose. When excess of unlabelled GDP-mannose was added to a partially completed incubation there was a rapid transfer back of [14C]mannose from the mannolipid to GDP-mannose. The other product of the reaction, the mannolipid, had the properties of a prenol phosphate mannose. This was illustrated by its lability to dilute acid but stability to dilute alkali, and by its chromatographic properties. Dolichol phosphate stimulated the incorporation of [14C]mannose into both mannolipid and into protein, although the former effect was larger and more consistent than the latter. The incorporation of exogenous [3H]dolichol phosphate into the mannolipid, and its release, accompanied by mannose, on treatment of the mannolipid with dilute acid, confirmed that exogenous dolichol phosphate can act as an acceptor of mannose in this system. It was shown that other exogenous polyprenol phosphates (but not farnesol phosphate or cetyl phosphate) can substitute for dolichol phosphate in this respect but that they are much less efficient than dolichol phosphate in stimulating the transfer of mannose to protein. Since pig liver contained substances with the chromatographic properties of both dolichol phosphate and dolichol phosphate mannose, which caused an increase in transfer of [14C]mannose from GDP-[14C]mannose to mannolipid, it was concluded that endogenous dolichol phosphate acts as an acceptor of mannose in the microsomal preparation. The results indicate that the mannolipid is an intermediate in the transfer of mannose from GDP-mannose to protein. Some 4% of the mannose of a sample of mannolipid added to an incubation was transferred to protein. A scheme is proposed to explain the variations with time in the production of radioactive mannolipid, mannoprotein, mannose 1-phosphate and mannose from GDP-[14C]mannose that takes account of the above observations. ATP, ADP, UTP, GDP, ADP-glucose and UDP-glucose markedly inhibited the transfer of mannose to the mannolipid.  相似文献   

9.
The mannose receptor, a glycoprotein expressed in a soluble and membrane form by macrophages, plays an important role in homeostasis and immunity. Using biochemical and immunohistochemical analyses, we demonstrate that this receptor, both in its soluble and membrane forms, is expressed in vivo in the post-natal murine brain and that its expression is developmentally regulated. Its expression is at its highest in the first week of life and dramatically decreases thereafter, being maintained at a low level throughout adulthood. The receptor is present in most brain regions at an early post-natal age, the site of the most intense expression being the meninges followed by the cerebral cortex, brain stem and the cerebellum. With age, expression of the mannose receptor is maintained in regions such as the cerebral cortex and the brain stem, whereas it disappears from others such as the hippocampus or the striatum. In healthy brain, no expression can be detected in oligodendrocytes, ependymal cells, endothelial cells or parenchymal microglia. The mannose receptor is expressed by perivascular macrophages/microglia and meningeal macrophages, where it might be important for the brain immune defence, and by two populations of endogenous brain cells, astrocytes and neurons. The developmentally dependent, regionally regulated expression of the mannose receptor in glial and neuronal cells strongly suggests that this receptor plays an important role in homeostasis during brain development and/or neuronal function.  相似文献   

10.
Rat liver microsomes catalyze the transfer of mannose from GDPmannose to both retinyl phosphate and dolichyl phosphate to form mannosylphosphorylretinol, mannosylphosphoryldolichol and GDP. The two reactions differ in term of reversibility. In fact, a 200-fold isotopic dilution of GDP[14C]mannose by unlabeled GDPmannose causes mannosylphosphoryldolichol labeling to disappear almost completely, while mannosylphosphorylretinol labeling remains at the same level. The same observation can be made if the mannose donor is removed by centrifugation and replaced by excess GDP; again mannosylphosphorylretinol is stable, but mannosylphosphoryldolichol drops down to one-third of its initial level, as expected for, respectively, a non-reversible and a reversible reaction. Placed in an aqueous medium, mannosylphosphorylretinol releases mannose 1-phosphate (beta configuration) whereas it is quite stable when kept in a membranous environment. These results strongly suggest that mannosylphosphorylretinol as soon as it is formed is segregated in such a way that it is no longer available to the back-reaction; the functional consequence of this segregation would be the possibility for mannosylphosphorylretinol to mannosylate some non-polar regions of certain protein chains.  相似文献   

11.
Y Goda  S R Pfeffer 《Cell》1988,55(2):309-320
Mannose 6-phosphate receptors carry soluble lysosomal enzymes from the trans Golgi network (TGN) to prelysosomes, and then return to the TGN for another round of lysosomal enzyme sorting. We describe here a complementation scheme that detects the vesicular transport of the 300 kd mannose 6-phosphate/IGF-II receptor from prelysosomes to the TGN in cell extracts. In vitro transport displays the same selectivity observed in living cells in that the transferrin receptor traverses to the TGN at a much lower rate than mannose 6-phosphate receptors. Furthermore, recycling of mannose 6-phosphate/IGF-II receptors to the TGN requires GTP hydrolysis and can be distinguished biochemically from the constitutive transport of proteins between Golgi cisternae by its resistance to the weak base, primaquine.  相似文献   

12.
Dolichyl monophosphate and its sugar derivatives in plants.   总被引:10,自引:5,他引:5       下载免费PDF全文
A glucose acceptor was isolated from soya beans by extraction with chloroform/methanol (2:1, v/v), followed by DEAE-cellulose column chromatography of the extract. This acceptor could not be distinguished from liver dolichyl monophosphate by t.l.c. It could replace dolichyl monophosphate as a mannose acceptor with a liver enzyme and its glucosylated derivative could replace dolichyl monophosphate glucose as a glucose donor in the same system. These results, together with those already reported [Pont Lezica, Brett, Romero Martinez & Dankert (1975) Biochem, Biophys. Res. Commun. 66, 980-987], indicate that the acceptor from soya bean is a dolichyl monophosphate. Gel filtration of its glucosylated derivative on Sephadex G-75 in the presence of sodium deoxycholate indicated that the acceptor contained 17 or 18 isoprene units. An enzyme preparation from pea seedlings was shown to use endogenous acceptors to form lipid phosphate sugars containing mannose and N-acetylglucosamine from GDP-mannose and UDP-N-acetylglucosamine. Chromatographic and degradative techniques indicated that the compounds formed were lipid monophosphate mannose, lipid pyrophosphate N-acetylglucosamine, lipid pyrophosphate chitobiose and a series of lipid pyrophosphate oligosaccharides containing both mannose and N-acetylglucosamine. None of these compounds was degraded by catalytic hydrogenation, and so the lipid moiety in each case was probably an alpha-saturated polyprenol. The endogenous acceptors for mannose and N-acetylglucosamine in peas may therefore be dolichyl monophosphate, as has been found in mammalian systems.  相似文献   

13.
Bacteriophage lambda adsorbs to its Escherichia coli K-12 host by interacting with LamB, a maltose- and maltodextrin-specific porin of the outer membrane. LamB also serves as a receptor for several other bacteriophages. Lambda DNA requires, in addition to LamB, the presence of two bacterial cytoplasmic integral membrane proteins for penetration, namely, the IIC(Man) and IID(Man) proteins of the E. coli mannose transporter, a member of the sugar-specific phosphoenolpyruvate:sugar phosphotransferase system (PTS). The PTS transporters for mannose of E. coli, for fructose of Bacillus subtilis, and for sorbose of Klebsiella pneumoniae were shown to be highly similar to each other but significantly different from other PTS transporters. These three enzyme II complexes are the only ones to possess distinct IIC and IID transmembrane proteins. In the present work, we show that the fructose-specific permease encoded by the levanase operon of B. subtilis is inducible by mannose and allows mannose uptake in B. subtilis as well as in E. coli. Moreover, we show that the B. subtilis permease can substitute for the E. coli mannose permease cytoplasmic membrane components for phage lambda infection. In contrast, a series of other bacteriophages, also using the LamB protein as a cell surface receptor, do not require the mannose transporter for infection.  相似文献   

14.
The kinetics of incorporation of leucine, galactose and mannose into intracellular and secreted myeloma protein, MOPC 21 IgG(1) and MOPC 46 kappa-type light chain, by cell suspensions of two myeloma plasma-cell tumours, MOPC 21 and MOPC 46, were similar. Radioactive galactose was incorporated to over 90% into galactose residues of intracellular and secreted protein, mannose to over 90% into glucosamine and mannose residues of intracellular protein and to over 90% into glucosamine, mannose and fucose residues of secreted protein, but not into galactose residues. The results show that specific residues in the carbohydrate portion of myeloma proteins can be labelled by specific radioactive monosaccharides, and suggest that fucose residues are added, while myeloma protein is in its final stage of secretion from the plasma cell. The kinetics of incorporation indicate at least three sequential precursor-product relationships between different intracellular forms and the secreted form of myeloma protein.  相似文献   

15.
Studies examining the regulatory roles and clinical applications of monosaccharides other than glucose in cancer have been neglected. Mannose, a common type of monosaccharide found in human body fluids and tissues, primarily functions in protein glycosylation rather than carbohydrate metabolism. Recent research has demonstrated direct anticancer effects of mannose in vitro and in vivo. Simply supplementing cell culture medium or drinking water with mannose achieved these effects. Moreover, mannose enhances the effectiveness of current cancer treatments including chemotherapy, radiotherapy, targeted therapy, and immune therapy. Besides the advancements in basic research on the anticancer effects of mannose, recent studies have reported its application as a biomarker for cancer or in the delivery of anticancer drugs using mannose-modified drug delivery systems. This review discusses the progress made in understanding the regulatory roles of mannose in cancer progression, the mechanisms underlying its anticancer effects, and its current application in cancer diagnosis and treatment.  相似文献   

16.
Hamster liver post-nuclear membranes catalyze the transfer of mannose from GDP-mannose to endogenous dolichyl phosphate and to a second major endogenous acidic lipid. This mannolipid was believed to be synthesized from endogenous retinyl phosphate and was tentatively identified as retinyl phosphate mannose (Ret-P-Man) (De Luca, L. M., Brugh, M. R. Silverman-Jones, C. S. and Shidoji, Y. (1982) Biochem. J. 208, 159-170). To characterize this endogenous mannolipid in more detail, we isolated and purified the mannolipid from incubations containing hamster liver membranes and GDP-[14C]mannose and compared its properties to those of authentic Ret-P-Man. We found that the endogenous mannolipid was separable from authentic Ret-P-Man on a Mono Q anion exchange column, did not exhibit the absorbance spectrum characteristic of a retinol moiety, and was stable to mild acid under conditions which cleave authentic Ret-P-Man. The endogenous mannolipid was sensitive to mild base hydrolysis and mannose was released from the mannolipid by snake venom phosphodiesterase digestion. These properties were consistent with the endogenous acceptor being phosphatidic acid. Addition of exogenous phosphatidic acid, but not phospholipids with a head group blocking the phosphate moiety, to incubations containing hamster liver membranes and GDP-[14C]mannose resulted in the synthesis of a mannolipid with chromatographic and physical properties identical to the endogenous mannolipid. A double-labeled mannolipid was synthesized in incubations containing hamster liver membranes, GDP-[14C]mannose, and [3H]phosphatidic acid. Mannosyl transfer to exogenous phosphatidic acid was saturable with increasing concentrations of phosphatidic acid and GDP-mannose and specific for glycosyl transfer from GDP-mannose. Class E Thy-1-negative mutant mouse lymphoma cell membranes, which are defective in dolichyl phosphate mannose synthesis, also fail to transfer mannose from GDP-mannose to exogenous phosphatidic acid or retinyl phosphate. Amphomycin, an inhibitor of dolichyl phosphate mannose synthesis, blocked mannosyl transfer to the endogenous lipid, and to exogenous retinyl phosphate and phosphatidic acid. We conclude that the same mannosyltransferase responsible for dolichyl phosphate mannose synthesis can also utilize in vitro exogenous retinyl phosphate and phosphatidic acid as well as endogenous phosphatidic acid as mannosyl acceptors.  相似文献   

17.
Kitajima T  Chiba Y  Jigami Y 《The FEBS journal》2006,273(22):5074-5085
In yeast, the N-linked oligosaccharide modification in the Golgi apparatus is initiated by alpha1,6-mannosyltransferase (encoded by the OCH1 gene) with the addition of mannose to the Man(8)GlcNAc(2) or Man(9)GlcNAc(2) endoplasmic reticulum intermediates. In order to characterize its enzymatic properties, the soluble form of the recombinant Och1p was expressed in the methylotrophic yeast Pichia pastoris as a secreted protein, after truncation of its transmembrane region and fusion with myc and histidine tags at the C-terminus, and purified using a metal chelating column. The enzymatic reaction was performed using various kinds of pyridylaminated (PA) sugar chains as acceptor, and the products were separated by high performance liquid chromatography. The recombinant Och1p efficiently transferred a mannose to Man(8)GlcNAc(2)-PA and Man(9)GlcNAc(2)-PA acceptors, while Man(5)GlcNAc(2)-PA, which completely lacks alpha1,2-linked mannose residues, was not used as an acceptor. At high enzyme concentrations, a novel product was detected by HPLC. Analysis of the product revealed that a second mannose was attached at the 6-O-position of alpha1,3-linked mannose branching from the alpha1,6-linked mannose that is attached to beta1,4-linked mannose of Man(10)GlcNAc(2)-PA produced by the original activity of Och1p. Our results indicate that Och1p has the potential to transfer two mannoses from GDP-mannose, and strictly recognizes the overall structure of high mannose type oligosaccharide.  相似文献   

18.
Particulate membrane fractions from pig brain catalyse the synthesis of lipid-linked sugar derivatives of the dolichyl phosphate pathway. Flavomycin, a phosphoglycolipid antibiotic produced by various species of streptomycetes, interferes with the formation of these glycolipids to a different extent. The formation of dolichyl phosphate glucose was shown to be most susceptible to the antibiotic, being blocked by about 50% in the presence of 0.2mm-flavomycin, whereas the synthesis of dolichyl diphosphate N-acetylglucosamine, dolichyl diphosphate chitobiose and dolichyl diphosphate chitobiosyl mannose required higher concentrations to achieve a comparable inhibition. Although the formation of dolichyl phosphate mannose was hardly affected, the accumulation of oligosaccharides with five to seven sugar units was observed, when dolichyl diphosphate oligosaccharides were synthesized with GDP-[(14)C]mannose in the presence of 1mm-flavomycin. This indicates that the inhibition of the synthesis of larger-sized oligosaccharides, known to be mediated by lipid-bound mannose, was not caused by an actual deficiency in dolichyl phosphate mannose. At flavomycin concentrations that inhibited the formation of dolichyl phosphate glucose by 50%, the transfer of lipid-linked saccharides to either the hexapeptide Tyr-Asn-Gly-Thr-Ser-Val or endogenous protein acceptors was hardly influenced. The mode of action of flavomycin is still obscure, but seems not to be of a competitive nature, since the inhibition was unaffected by increasing concentrations of dolichyl phosphate. Some evidence indicates that, besides a direct interaction of the antibiotic with some transferases, a non-specific incorporation into the membrane and alteration of its properties might be responsible for those inhibitory effects on all enzymes which were observed at high concentrations of flavomycin.  相似文献   

19.
The effects of periodate and α-mannosidase treatment of the Dolichos biflorus lectin were determined. Destruction by periodate of 16% of the mannose residues of the lactin had no effect on its ability to agglutinate type A erythrocytes, precipitate blood group A + H substance or to be precipitated by concanavalin A. Removal of up to 40% of the mannose by either periodate or α-mannosidase rendered the lecton nonprecipitable by concanavalin A. The lectrin treated by α-mannosidase retained its ability to agglutinate erythrocytes and precipitate blood group A + H substance, but the lectin treated with periodate lost most of its activity.The results suggest that the complete integrity of the carbohydrate unit of the lectin is not necessary for its activity and that the periodate may be affecting the protein portion of the molecule as well as its carbohydrate residues. No conversion of form A to form B of the lectin was observed with either periodate oxidation or α-mannosidase treatment.  相似文献   

20.
Control of gross morphology of soft matter remains an area of continued interest. Towards this goal, this paper describes conjugation of mannose residues and introduction of thiol functionalities to diphenylalanine (FF) dipeptide, a fibrillating motif from amyloid‐β peptide, as covalent modifiers of its solution‐phase self‐assembly process. It was found that covalent attachment of a single mannose residue to FF leads to the retention of tubular structures, whereas the conjugation of two mannose units, linked through a Lys residue, resulted in a dramatic change from tubular morphology to spherical structures. However, a similar switch to spherical objects could be achieved by introducing a thiol residue in the mono‐mannosylated FF dipeptide. Interestingly, these glycopeptides also exhibited interaction with concanavalin A, thereby providing an indirect evidence for the availability of mannose units for the process of lectin‐carbohydrate interaction in the self‐organized state. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号