首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Yang JR  Huang YP  Chang FY  Hsu LC  Lin YC  Su CH  Chen PJ  Wu HS  Liu MT 《PloS one》2011,6(11):e28288
Past influenza pandemics have been characterized by the signature feature of multiple waves. However, the reasons for multiple waves in a pandemic are not understood. Successive waves in the 2009 influenza pandemic, with a sharp increase in hospitalized and fatal cases, occurred in Taiwan during the winter of 2010. In this study, we sought to discover possible contributors to the multiple waves in this influenza pandemic. We conducted a large-scale analysis of 4703 isolates in an unbiased manner to monitor the emergence, dominance and replacement of various variants. Based on the data from influenza surveillance and epidemic curves of each variant clade, we defined virologically and temporally distinct waves of the 2009 pandemic in Taiwan from May 2009 to April 2011 as waves 1 and 2, an interwave period and wave 3. Except for wave 3, each wave was dominated by one distinct variant. In wave 3, three variants emerged and co-circulated, and formed distinct phylogenetic clades, based on the hemagglutinin (HA) genes and other segments. The severity of influenza was represented as the case fatality ratio (CFR) in the hospitalized cases. The CFRs in waves 1 and 2, the interwave period and wave 3 were 6.4%, 5.1%, 15.2% and 9.8%, respectively. The results highlight the association of virus evolution and variable influenza severity. Further analysis revealed that the major affected groups were shifted in the waves to older individuals, who had higher age-specific CFRs. The successive pandemic waves create challenges for the strategic preparedness of health authorities and make the pandemic uncertain and variable. Our findings indicate that the emergence of new variants and age shift to high fatality groups might contribute potentially to the occurrence of successive severe pandemic waves and offer insights into the adjustment of national responses to mitigate influenza pandemics.  相似文献   

2.
Influenza viruses are respiratory pathogens that continue to pose a significantly high risk of morbidity and mortality of humans worldwide. Vaccination is one of the most effective strategies for minimizing damages by influenza outbreaks. In addition, rapid development and production of efficient vaccine with convenient administration is required in case of influenza pandemic. In this study, we generated recombinant influenza virus hemagglutinin protein 1 (sHA1) of 2009 pandemic influenza virus as a vaccine candidate using a well-established bacterial expression system and administered it into mice via sublingual (s.l.) route. We found that s.l. immunization with the recombinant sHA1 plus cholera toxin (CT) induced mucosal antibodies as well as systemic antibodies including neutralizing Abs and provided complete protection against infection with pandemic influenza virus A/CA/04/09 (H1N1) in mice. Indeed, the protection efficacy was comparable with that induced by intramuscular (i.m.) immunization route utilized as general administration route of influenza vaccine. These results suggest that s.l. vaccination with the recombinant non-glycosylated HA1 protein offers an alternative strategy to control influenza outbreaks including pandemics.  相似文献   

3.
The 1918-1919 influenza pandemic was composed of multiple waves within a period of nine months in several regions of the world. Increasing our understanding of the mechanisms responsible for this multi-wave profile has important public health implications. We model the transmission dynamics of two strains of influenza interacting via cross-immunity to simulate two temporal waves of influenza and explore the impact of the basic reproduction number, as a measure of transmissibility associated to each influenza strain, cross-immunity and the timing of the onset of the second influenza epidemic on the pandemic profile. We use time series of case notifications during the 1918 influenza pandemic in Geneva, Switzerland, for illustration. We calibrate our mathematical model to the initial wave of infection to estimate the basic reproduction number of the first wave and the corresponding timing of onset of the second influenza variant. We use this information to explore the impact of cross-immunity levels on the dynamics of the second wave of influenza. Our results for the 1918 pandemic in Geneva, Switzerland, indicate that a second wave can occur whenever R01<1.5 or when cross-immunity levels are less than 0.58 for our estimated R02 of 2.4. We also explore qualitatively profiles of two-wave pandemics and compare them with real temporal profiles of the 1918 influenza pandemic in other regions of the world including several Scandinavian cities, New York City, England and Wales, and Sydney, Australia. Pandemic profiles are classified into three broad categories namely “right-handed”, “left-handed”, and “M-shape”. Our results indicate that avoiding a second influenza epidemic is plausible given sufficient levels of cross-protection are attained via natural infection during an early (herald) wave of infection or vaccination campaigns prior to a second wave. Furthermore, interventions aimed at mitigating the first pandemic wave may be counterproductive by increasing the chances of a second wave of infection that could potentially be more virulent than the first.  相似文献   

4.
Infection with seasonal influenza viruses induces a certain extent of protective immunity against potentially pandemic viruses of novel subtypes, also known as heterosubtypic immunity. Here we demonstrate that infection with a recent influenza A/H3N2 virus strain induces robust protection in ferrets against infection with a highly pathogenic avian influenza virus of the H5N1 subtype. Prior H3N2 virus infection reduced H5N1 virus replication in the upper respiratory tract, as well as clinical signs, mortality, and histopathological changes associated with virus replication in the brain. This protective immunity correlated with the induction of T cells that cross-reacted with H5N1 viral antigen. We also demonstrated that prior vaccination against influenza A/H3N2 virus reduced the induction of heterosubtypic immunity otherwise induced by infection with the influenza A/H3N2 virus. The implications of these findings are discussed in the context of vaccination strategies and vaccine development aiming at the induction of immunity to pandemic influenza.  相似文献   

5.
The Spanish influenza virus pandemic of 1918 was responsible for 40 million to 50 million deaths and is antigenically similar to the swine lineage 2009 pandemic influenza virus. Emergence of the 2009 pandemic from swine into humans has raised the possibility that low levels of cross-protective immunity to past shared epitopes could confer protection. In this study, influenza viruslike particles (VLPs) were engineered to express the hemagglutinin (HA) and genes from the 1918 influenza virus to evaluate the duration of cross-protection to the H1N1 pandemic strain by vaccinating young mice (8 to 12 weeks) and then allowing the animals to age to 20 months. This immunity was long lasting, with homologous receptor-blocking antibodies detected throughout the lifespan of vaccinated mice. Furthermore, the 1918 VLPs fully protected aged mice from 2009 pandemic H1N1 virus challenge 16 months after vaccination. Histopathological assessment showed that aged vaccinated mice had significant protection from alveolar infection but less protection of the bronchial tissue than adult vaccinated mice. Additionally, passive transfer of immune serum from aged vaccinated mice resulted in protection from death but not morbidity. This is the first report describing the lifelong duration of cross-reactive immune responses elicited by a 1918 VLP vaccine in a murine model. Importantly, these lifelong immune responses did not result in decreased total viral replication but did prevent infection of the lower respiratory tract. These findings show that immunity acquired early in life can restrict the anatomical location of influenza viral replication, rather than preventing infection, in the aged.  相似文献   

6.

Background

We explore vaccination strategies against pandemic influenza in Mexico using an age-structured transmission model calibrated against local epidemiological data from the Spring 2009 A(H1N1) pandemic.

Methods and Findings

In the context of limited vaccine supplies, we evaluate age-targeted allocation strategies that either prioritize youngest children and persons over 65 years of age, as for seasonal influenza, or adaptively prioritize age groups based on the age patterns of hospitalization and death monitored in real-time during the early stages of the pandemic. Overall the adaptive vaccination strategy outperformed the seasonal influenza vaccination allocation strategy for a wide range of disease and vaccine coverage parameters.

Conclusions

This modeling approach could inform policies for Mexico and other countries with similar demographic features and vaccine resources issues, with regard to the mitigation of the S-OIV pandemic. We also discuss logistical issues associated with the implementation of adaptive vaccination strategies in the context of past and future influenza pandemics.  相似文献   

7.
Becker NG  Wang D 《PloS one》2011,6(3):e17764
Antiviral drugs dispensed during the 2009 influenza pandemic generally failed to contain transmission. This poses the question of whether preparedness for a future pandemic should include plans to use antiviral drugs to mitigate transmission.Simulations using a standard transmission model that allows for infected arrivals and delayed vaccination show that attempts to contain transmission require relatively few antiviral doses. In contrast, persistent use of antiviral drugs when the reproduction number remains above 1 use very many doses and are unlikely to reduce the eventual attack rate appreciably unless the stockpile is very large. A second model, in which the community has a household structure, shows that the effectiveness of a strategy of dispensing antiviral drugs to infected households decreases rapidly with time delays in dispensing the antivirals. Using characteristics of past pandemics it is estimated that at least 80% of primary household cases must present upon show of symptoms to have a chance of containing transmission by dispensing antiviral drugs to households. To determine data needs, household outbreaks were simulated with 50% receiving antiviral drugs early and 50% receiving antiviral drugs late. A test to compare the size of household outbreaks indicates that at least 100-200 household outbreaks need to be monitored to find evidence that antiviral drugs can mitigate transmission of the newly emerged virus.Use of antiviral drugs in an early attempt to contain transmission should be part of preparedness plans for a future influenza pandemic. Data on the incidence of the first 350 cases and the eventual attack rates of the first 200 hundred household outbreaks should be used to estimate the initial reproduction number R and the effectiveness of antiviral drugs to mitigate transmission. Use of antiviral drugs to mitigate general transmission should cease if these estimates indicate that containment of transmission is unlikely.  相似文献   

8.
Classical antiviral therapies target viral proteins and are consequently subject to resistance. To counteract this limitation, alternative strategies have been developed that target cellular factors. We hypothesized that such an approach could also be useful to identify broad-spectrum antivirals. The influenza A virus was used as a model for its viral diversity and because of the need to develop therapies against unpredictable viruses as recently underlined by the H1N1 pandemic. We proposed to identify a gene-expression signature associated with infection by different influenza A virus subtypes which would allow the identification of potential antiviral drugs with a broad anti-influenza spectrum of activity. We analyzed the cellular gene expression response to infection with five different human and avian influenza A virus strains and identified 300 genes as differentially expressed between infected and non-infected samples. The most 20 dysregulated genes were used to screen the connectivity map, a database of drug-associated gene expression profiles. Candidate antivirals were then identified by their inverse correlation to the query signature. We hypothesized that such molecules would induce an unfavorable cellular environment for influenza virus replication. Eight potential antivirals including ribavirin were identified and their effects were tested in vitro on five influenza A strains. Six of the molecules inhibited influenza viral growth. The new pandemic H1N1 virus, which was not used to define the gene expression signature of infection, was inhibited by five out of the eight identified molecules, demonstrating that this strategy could contribute to identifying new broad anti-influenza agents acting on cellular gene expression. The identified infection signature genes, the expression of which are modified upon infection, could encode cellular proteins involved in the viral life cycle. This is the first study showing that gene expression-based screening can be used to identify antivirals. Such an approach could accelerate drug discovery and be extended to other pathogens.  相似文献   

9.
In 2009, public health agencies across the globe worked to mitigate the impact of the swine-origin influenza A (pH1N1) virus. These efforts included intensified surveillance, social distancing, hygiene measures, and the targeted use of antiviral medications to prevent infection (prophylaxis). In addition, aggressive antiviral treatment was recommended for certain patient subgroups to reduce the severity and duration of symptoms. To assist States and other localities meet these needs, the U.S. Government distributed a quarter of the antiviral medications in the Strategic National Stockpile within weeks of the pandemic's start. However, there are no quantitative models guiding the geo-temporal distribution of the remainder of the Stockpile in relation to pandemic spread or severity. We present a tactical optimization model for distributing this stockpile for treatment of infected cases during the early stages of a pandemic like 2009 pH1N1, prior to the wide availability of a strain-specific vaccine. Our optimization method efficiently searches large sets of intervention strategies applied to a stochastic network model of pandemic influenza transmission within and among U.S. cities. The resulting optimized strategies depend on the transmissability of the virus and postulated rates of antiviral uptake and wastage (through misallocation or loss). Our results suggest that an aggressive community-based antiviral treatment strategy involving early, widespread, pro-rata distribution of antivirals to States can contribute to slowing the transmission of mildly transmissible strains, like pH1N1. For more highly transmissible strains, outcomes of antiviral use are more heavily impacted by choice of distribution intervals, quantities per shipment, and timing of shipments in relation to pandemic spread. This study supports previous modeling results suggesting that appropriate antiviral treatment may be an effective mitigation strategy during the early stages of future influenza pandemics, increasing the need for systematic efforts to optimize distribution strategies and provide tactical guidance for public health policy-makers.  相似文献   

10.
The data on cytotoxicity and antiviral activity of commercial antivirals, such as Remantadine, Oseltamivir, Arbidol and Ribavirin in the MDCK cell culture infected with highly pathogenic (H5N1) and pandemic 2009 (H1N1) influenza A viruses are presented. The study of the antiviral activity of antivirals in the MDCK cells culture demonstrated that Arbidol, Rimantadine and Ribavirin efficiently inhibited reproduction of the highly pathogenic H5N1 influenza viruses isolated from sick birds. Arbidol and Oseltamivir carboxylate selectively inhibited reproduction of the pandemic 2009 H1N1 influenza A viruses with changed specificity to the cell receptors, causing severe influenza in men, while remantadine had no effect on their reproduction.  相似文献   

11.

Background

Though recommended by many and mandated by some, influenza vaccination rates among health care workers, even in pandemics, remain below optimal levels. The objective of this study was to assess vaccination uptake, attitudes, and distinguishing characteristics (including doctor-nurse differences) of health care workers who did and did not receive the pandemic H1N1 influenza vaccine in late 2009.

Methodology/Principal Findings

In early 2010 we mailed a self-administered survey to 800 physicians and 800 nurses currently licensed and practicing in Minnesota. 1,073 individuals responded (cooperation rate: 69%). 85% and 62% of Minnesota physicians and nurses, respectively, reported being vaccinated. Accurately estimating the risk of vaccine side effects (OR 2.0; 95% CI 1.5–2.7), agreeing with a professional obligation to be vaccinated (OR 10.1; 95% CI 7.1–14.2), an ethical obligation to follow public health authorities'' recommendations (OR 9.9; 95% CI 6.6–14.9), and laws mandating pandemic vaccination (OR 3.1; 95% CI 2.3–4.1) were all independently associated with receiving the H1N1 influenza vaccine.

Conclusions/Significance

While a majority of health care workers in one midwestern state reported receiving the pandemic H1N1 vaccine, physicians and nurses differed significantly in vaccination uptake. Several key attitudes and perceptions may influence health care workers'' decisions regarding vaccination. These data inform how states might optimally enlist health care workers'' support in achieving vaccination goals during a pandemic.  相似文献   

12.
Sublingual (SL) administration of influenza vaccine would be non-invasive and effective way to give human populations protective immunity against the virus, especially when pandemic influenza outbreaks. In this study, the efficacy of pandemic influenza virus-based subunit vaccines was tested after sublingual (SL) adjuvant administration in pigs. Eight specific pathogen-free Yucatan pigs were divided into 4 groups: nonvaccinated but challenged (A) and vaccinated and challenged (B, C, and D). The vaccinated groups were subdivided by vaccine type and inoculation route: SL subunit vaccine (hemagglutinin antigen 1 [HA1] + wild-type cholera toxin [wtCT], B); IM subunit vaccine (HA1 + aluminum hydroxide, C); and IM inactivated vaccine (+ aluminum hydroxide, D). The vaccines were administered twice at a 2-week interval. All pigs were challenged with pandemic influenza virus (A/swine/GCVP-KS01/2009 [H1N1]) and monitored for clinical signs, serology, viral shedding, and histopathology. After vaccination, hemagglutination inhibition titre was higher in group D (320) than in the other vaccinated groups (40–80) at the time of challenge. The mobility and feed intake were reduced in group C. Both viral shedding and histopathological lesions were reduced in groups B and D. Although this study has limitation due to the limited number of pigs (2 pigs per a group), the preliminary data in this study provided the protective potential of SL administration of bacteria-expressed pandemic H1N1 influenza vaccine in pigs. There should be additional animal studies about effective adjuvant system and vaccine types for the use of SL influenza vaccination.  相似文献   

13.
CY Wu  YC Yeh  JT Chan  YC Yang  JR Yang  MT Liu  HS Wu  PW Hsiao 《PloS one》2012,7(8):e42363
The recent threats of influenza epidemics and pandemics have prioritized the development of a universal vaccine that offers protection against a wider variety of influenza infections. Here, we demonstrate a genetically modified virus-like particle (VLP) vaccine, referred to as H5M2eN1-VLP, that increased the antigenic content of NA and induced rapid recall of antibody against HA(2) after viral infection. As a result, H5M2eN1-VLP vaccination elicited a broad humoral immune response against multiple viral proteins and caused significant protection against homologous RG-14 (H5N1) and heterologous A/California/07/2009 H1N1 (CA/07) and A/PR/8/34 H1N1 (PR8) viral lethal challenges. Moreover, the N1-VLP (lacking HA) induced production of a strong NA antibody that also conferred significant cross protection against H5N1 and heterologous CA/07 but not PR8, suggesting the protection against N1-serotyped viruses can be extended from avian-origin to CA/07 strain isolated in humans, but not to evolutionally distant strains of human-derived. By comparative vaccine study of an HA-based VLP (H5N1-VLP) and NA-based VLPs, we found that H5N1-VLP vaccination induced specific and strong protective antibodies against the HA(1) subunit of H5, thus restricting the breadth of cross-protection. In summary, we present a feasible example of direction of VLP vaccine immunity toward NA and HA(2), which resulted in cross protection against both seasonal and pandemic influenza strains, that could form the basis for future design of a better universal vaccine.  相似文献   

14.
Vaccination with the non-adjuvanted split-virion A/California/7/2009 influenza vaccine (pandemic H1N1 2009 vaccine) began in October 2009 in Japan. The present study was designed to assess the effect of prior vaccination with a seasonal trivalent influenza vaccine on the antibody response to the pandemic H1N1 2009 vaccine in healthy adult volunteers. One hundred and seventeen participants aged 22 to 62 were randomly assigned to two study groups. In Group 1 (the priming group), participants were first vaccinated with the seasonal trivalent influenza vaccine followed by two separate one-dose vaccinations of the pandemic H1N1 2009 vaccine, whereas in Group 2 (the non-priming group), the participants were first vaccinated with one dose of the pandemic H1N1 2009 vaccine, followed by simultaneous vaccination of the seasonal trivalent vaccine and the second dose of the pandemic H1N1 2009 vaccine. The participants in Group 2 had a seroprotection rate (SPR) of 79.7% and a seroconversion rate (SCR) of 79.7% in the hemagglutination-inhibition test after the first dose of the pandemic H1N1 2009 vaccine, indicating that the pandemic H1N1 2009 vaccine is sufficiently immunogenic. On the other hand, the participants of Group 1 had a significantly weaker antibody response, with a SPR of 60.8% and a SCR of 58.5%. These results indicate that prior vaccination with the seasonal trivalent influenza vaccine inhibits the antibody response to the pandemic H1N1 2009 vaccine. Therefore, the pandemic H1N1 2009 vaccine should be administered prior to vaccination with the seasonal trivalent influenza vaccine.  相似文献   

15.

Background

The Canadian National Antiviral Stockpile (NAS) contains treatment for 17.5% of Canadians. This assumes no concurrent intervention strategies and no wastage due to non-influenza respiratory infections. A dynamic model can provide a mechanism to consider complex scenarios to support decisions regarding the optimal NAS size under uncertainty.

Methods

We developed a dynamic model for pandemic influenza in Canada that is structured by age and risk to calculate the demand for antivirals to treat persons with pandemic influenza under a wide-range of scenarios that incorporated transmission dynamics, disease severity, and intervention strategies. The anticipated per capita number of acute respiratory infections due to viruses other than influenza was estimated for the full pandemic period from surveys based on criteria to identify potential respiratory infections.

Results

Our results demonstrate that up to two thirds of the population could develop respiratory symptoms as a result of infection with a pandemic strain. In the case of perfect antiviral allocation, up to 39.8% of the population could request antiviral treatment. As transmission dynamics, severity and timing of the emergence of a novel influenza strain are unknown, the sensitivity analysis produced considerable variation in potential demand (median: 11%, IQR: 2–21%). If the next pandemic strain emerges in late spring or summer and a vaccine is available before the anticipated fall wave, the median prediction was reduced to 6% and IQR to 0.7–14%. Under the strategy of offering empirical treatment to all patients with influenza like symptoms who present for care, demand could increase to between 65 and 144%.

Conclusions

The demand for antivirals during a pandemic is uncertain. Unless an accurate, timely and cost-effective test is available to identify influenza cases, demand for antivirals from persons infected with other respiratory viruses will be substantial and have a significant impact on the NAS.  相似文献   

16.
Seasonal influenza epidemics recur due to antigenic drift of envelope glycoprotein antigens and immune evasion of circulating viruses. Additionally, antigenic shift can lead to influenza pandemics. Thus, a universal vaccine that protects against multiple influenza virus strains could alleviate the continuing impact of this virus on human health. In mice, accelerated clearance of a new viral strain (cross-protection) can be elicited by prior infection (heterosubtypic immunity) or by immunization with the highly conserved internal nucleoprotein (NP). Both heterosubtypic immunity and NP-immune protection require antibody production. Here, we show that systemic immunization with NP readily accelerated clearance of a 2009 pandemic H1N1 influenza virus isolate in an antibody-dependent manner. However, human immunization with trivalent inactivated influenza virus vaccine (TIV) only rarely and modestly boosted existing levels of anti-NP IgG. Similar results were observed in mice, although the reaction could be enhanced with adjuvants, by adjusting the stoichiometry among NP and other vaccine components, and by increasing the interval between TIV prime and boost. Importantly, mouse heterosubtypic immunity that had waned over several months could be enhanced by injecting purified anti-NP IgG or by boosting with NP protein, correlating with a long-lived increase in anti-NP antibody titers. Thus, current immunization strategies poorly induce NP-immune antibody that is nonetheless capable of contributing to long-lived cross-protection. The high conservation of NP antigen and the known longevity of antibody responses suggest that the antiviral activity of anti-NP IgG may provide a critically needed component of a universal influenza vaccine.  相似文献   

17.
Dang UJ  Bauch CT 《PloS one》2011,6(8):e23580
Vaccination can delay the peak of a pandemic influenza wave by reducing the number of individuals initially susceptible to influenza infection. Emerging evidence indicates that susceptibility to severe secondary bacterial infections following a primary influenza infection may vary seasonally, with peak susceptibility occurring in winter. Taken together, these two observations suggest that vaccinating to prevent a fall pandemic wave might delay it long enough to inadvertently increase influenza infections in winter, when primary influenza infection is more likely to cause severe outcomes. This could potentially cause a net increase in severe outcomes. Most pandemic models implicitly assume that the probability of severe outcomes does not vary seasonally and hence cannot capture this effect. Here we show that the probability of intensive care unit (ICU) admission per influenza infection in the 2009 H1N1 pandemic followed a seasonal pattern. We combine this with an influenza transmission model to investigate conditions under which a vaccination program could inadvertently shift influenza susceptibility to months where the risk of ICU admission due to influenza is higher. We find that vaccination in advance of a fall pandemic wave can actually increase the number of ICU admissions in situations where antigenic drift is sufficiently rapid or where importation of a cross-reactive strain is possible. Moreover, this effect is stronger for vaccination programs that prevent more primary influenza infections. Sensitivity analysis indicates several mechanisms that may cause this effect. We also find that the predicted number of ICU admissions changes dramatically depending on whether the probability of ICU admission varies seasonally, or whether it is held constant. These results suggest that pandemic planning should explore the potential interactions between seasonally varying susceptibility to severe influenza outcomes and the timing of vaccine-altered pandemic influenza waves.  相似文献   

18.
Serum antibodies induced by seasonal influenza or seasonal influenza vaccination exhibit limited or no cross-reactivity against the 2009 pandemic swine-origin influenza virus of the H1N1 subtype (pH1N1). Ferrets immunized once or twice with MF59-adjuvanted seasonal influenza vaccine exhibited significantly reduced lung virus titers but no substantial clinical protection against pH1N1-associated disease. However, priming with MF59-adjuvanted seasonal influenza vaccine significantly increased the efficacy of a pandemic MF59-adjuvanted influenza vaccine against pH1N1 challenge. Elucidating the mechanism involved in this priming principle will contribute to our understanding of vaccine- and infection-induced correlates of protection. Furthermore, a practical consequence of these findings is that during an emerging pandemic, the implementation of a priming strategy with an available adjuvanted seasonal vaccine to precede the eventual pandemic vaccination campaign may be useful and life-saving.  相似文献   

19.
Influenza A virus causes recurring seasonal epidemics and occasional influenza pandemics. Because of changes in envelope glycoprotein Ags, neutralizing Abs induced by inactivated vaccines provide limited cross-protection against new viral serotypes. However, prior influenza infection induces heterosubtypic immunity that accelerates viral clearance of a second strain, even if the external proteins are distinct. In mice, cross-protection can also be elicited by systemic immunization with the highly conserved internal nucleoprotein (NP). Both T lymphocytes and Ab contribute to such cross-protection. In this paper, we demonstrate that anti-NP IgG specifically promoted influenza virus clearance in mice by using a mechanism involving both FcRs and CD8(+) cells. Furthermore, anti-NP IgG rescued poor heterosubtypic immunity in B cell-deficient mice, correlating with enhanced NP-specific CD8 T cell responses. Thus, Ab against this conserved Ag has potent antiviral activity both in naive and in influenza-immune subjects. Such antiviral activity was not seen when mice were vaccinated with another internal influenza protein, nonstructural 1. The high conservation of NP Ag and the known longevity of Ab responses suggest that anti-NP IgG may provide a critically needed component of a universal influenza vaccine.  相似文献   

20.
Antiviral drugs are being used for therapeutic purposes against influenza illness in humans. However, antiviral-resistant variants often nullify the effectiveness of antivirals. Combined medications, as seen in the treatment of cancers and other infectious diseases, have been suggested as an option for the control of antiviral-resistant influenza viruses. Here, we evaluated the therapeutic value of combination therapy against oseltamivir-resistant 2009 pandemic influenza H1N1 virus infection in DBA/2 mice. Mice were treated for five days with favipiravir and peramivir starting 4 hours after lethal challenge. Compared with either monotherapy, combination therapy saved more mice from viral lethality and resulted in increased antiviral efficacy in the lungs of infected mice. Furthermore, the synergism between the two antivirals, which was consistent with the survival outcomes of combination therapy, indicated that favipiravir could serve as a critical agent of combination therapy for the control of oseltamivir-resistant strains. Our results provide new insight into the feasibility of favipiravir in combination therapy against oseltamivir-resistant influenza virus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号