首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
It is well recognized that prostaglandins of the E (PGE) and F (PGF) series play an important role in ovarian physiology; in addition, nitric oxide (NO) has been recently demonstrated to be an important mediator of granulosa cell function. There is now evidence for a biologic relationship between PGs and the NO biosynthetic pathway. The aim of this study was to investigate the relationship between NO and PGE2 and PGF2alpha in bovine granulosa cells. Granulosa cells collected from small (<5mm) and large (>8mm) follicles were treated with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) or with indomethacin, an inhibitor of PGs synthesis, and PGE2 and PGF2alpha were quantified; in addition, the effects of PGE2 PGF2alpha and indomethacin on steroidogenesis and NO production were determined. The highest concentration of SNAP inhibited (P < 0.001) PGE2 production in cells from both kinds of follicles, while the lowest dose was effective only in cells from small follicles. The highest concentration of SNAP inhibited and stimulated (P < 0.001) PGF2alpha production in cells from small and large follicles, respectively. Progesterone (P4) production was stimulated by PGE2 and inhibited by PGF2alpha (P < 0.001) in cells from both types of follicles. Estradiol 17beta (E2) secretion was inhibited in cells from small and stimulated in those from large follicles by PGE2 (P < 0.05), while PGF2alpha was stimulatory in cells from both kinds of follicles (P < 0.001). P4 production by cells from small follicles was inhibited and stimulated by those from large follicles by indomethacin (P < 0.001), which also increased E2 output in cells from small follicles (P < 0.001). NO production was inhibited by both PGE2 and PGF2alpha except at the lowest concentration, which was stimulatory (P < 0.001). Indomethacin stimulated (P < 0.001) NO production. Taken together, the present data suggest a cross-talk between NO and PGs biosynthetic pathways, which needs to be further clarified.  相似文献   

2.
The preovulatory increase in follicular prostaglandins (PG) stimulated by luteinizing hormone (LH) is dependent upon 3'-5'-cyclic adenosine monophosphate (cAMP) and is essential for ovulation. It has been proposed that follicular PG stimulate a second rise in cAMP, independent of LH. This study examined the temporal relationships among PGE2, PGF2 alpha 6-keto-PGF1 alpha, estradiol-17 beta, progesterone, testosterone, androstenedione and the biphasic increases of cAMP in follicles of rabbits. Does received indomethacin (IN, 20 mg/kg, i.v.; n = 30) or phosphate buffer (C; n = 30), 0.5 h before 50 ug of LH. At laparotomy at 0, 0.5, 1, 2, 4 or 8 h after LH, blood was collected from each ovarian vein and two follicles per ovary were aspirated of fluid and excised. Plasma and follicular tissue and fluid were assayed for PG and steroids. Tissue and fluid were assayed for cAMP. In C does, cAMP (pmol/follicle) in tissue increased from 11.3 at 0 h to 14.2 at 0.5 h, decreased at 1 h (5.4) and increased linearly through 8 h to 14.5. In IN-treated does, cAMP remained high from 0.5 (13.2) to 2 h (16.3), decreased at 4 h (7.9) then increased again by 8 h (15.5). Indomethacin decreased all PG in follicular tissue but 6-keto-PGF1 alpha rose after 2 h, whereas PGE2 and PGF2 alpha did not. Estradiol-17 beta, progesterone, and androstenedione did not vary with treatment; testosterone was increased (P less than .05) by IN. PGE2 or PGF2 alpha may terminate the first phase of cAMP production, rather than initiate the second phase.  相似文献   

3.
Prostaglandins (PG) F and E were measured by radioimmunoassay in peripheral, uterine and follicular plasma and in the theca and granulosa layers of the five largest preovulatory and the three largest postovulatory follicles, and in the myometrium and mucosa. Plasma and tissues were collected 16, 12, 8 and 4 h before and immediately after a midsequence oviposition that was accompanied by the next ovulation. PGF concentrations in the peripheral and uterine plasma increased at oviposition with a concomitant, 16-fold increase in plasma PGF concentrations of the largest preovulatory (F1) follicle. There was a gradual increase in PGF concentrations in the theca layers during follicular maturation, with the large increases occurring 12 h before oviposition in most follicles. The highest and the second highest concentrations were observed at oviposition in the F1 and the largest postovulatory (R1) follicles. In contrast, there were no specific changes in PGF concentrations in the granulosa layers of the follicles in relation to oviposition or follicular maturation. PGE concentrations in the theca layers of the F2 and F1 follicles were greater than in other follicles, while concentrations in the granulosa layer of all the follicles remained low. PGF concentrations in the myometrium and mucosa increased 8 h before oviposition but abruptly decreased at oviposition. These results suggest that the primary source of the increase in plasma PGF at oviposition are the theca layers of the F1 and R1 follicles and that PGs may be involved in uterine contractions for oviposition and in the ovulation process.  相似文献   

4.
The present study provides information regarding the effects of the sow follicular fluid (FF) on the motility of isolated segments of swine and rabbit oviducts. In addition, the concentration of prostaglandins (PGs) F2 alpha, E2 and E1 in the follicular fluid of sow ovaries isolated at different stages of the sex cycle as well as the generation of the same PGs by walls of ovarian follicles in early and late proestrus, in estrus, in metestrus and in diestrus, were explored. The stimulatory contractile effect of proestrous FF in isolated segments of sow fimbria was antagonized by polyphloretin phosphate (PPP), a PG receptor blocker and by indomethacin, an inhibitor of PG synthesis. The positive inotropism evoked by the FF was mimiked by bradykinin and the influences of both interventions were similarly antagonized by PPP. It appears plausible that the inotropic effect of the preovulatory FF on the sow fimbria could be not only by PGs already present in the fluid, but also by the stimulation of the synthesis of tubal PGs by follicular fluid bradykinin. The FF also stimulated the ampullary tubal segments isolated from proestrous sows whereas the same volume of FF depressed significantly the isometric developed tension of rabbit ampulla. The total concentration of the three PGs in the FF from late proestrous follicles was significantly greater than that of the same PGs in the other two stages of the sex cycle (early proestrus and diestrus), whereas the concentration of each PG (PGE2, PGF2 alpha or PGE1), did not differ within any of the stages of the cycle. Furthermore, the total amount of the three PGs produced by the walls of follicles from late proestrous ovaries was also significantly greater than that generated by ovarian follicles from early proestrus, estrus, metestrus and diestrus. In summary the results document that the concentration of each one of the PGs measured (E2, E1 or F2 alpha) attained maximal values at the time of ovulation. The results regarding the effects of FF on the inotropic activity of fimbrial and ampullary segments of sow oviducts also suggest that the fluid might play a physiological role, favouring the capture and transfer of ova into the oviducts at the moment of ovulation.  相似文献   

5.
An increase in the plasma concentrations of prostaglandins (PGs) is associated with uterine contractile activity and with oviposition in the hen. In order to assess the contribution of potential sources of prostaglandins to the increase in prostaglandin levels observed at oviposition, prostaglandins E2, F2 alpha, and 13,14-dihydro-15-keto PGF2 alpha (PGFM, the stable but biologically less active metabolite of PGF2 alpha) were measured in plasma from the brachial vein, ovarian follicular vein and uterine vein, and in tissues from ovarian follicles and the uterus 12 h before and at midsequence oviposition or a terminal oviposition. These two ovipositions differ in that a midsequence oviposition is followed within 0.25-1.0 h by the next ovulation of the sequence, whereas the terminal oviposition is followed by an ovulation 14 h later. The concentration of PGFM in plasma from the brachial vein increased at midsequence oviposition, while the levels of PGE2 were unchanged. Prostaglandin E2, F2 alpha, and FM levels were each similar in the plasma from the brachial and uterine veins at the time of midsequence oviposition. In plasma from the largest preovulatory follicle, the concentration of PGF2 alpha and PGFM increased 19- and 7-fold, respectively, from 12 h before midsequence oviposition to midsequence oviposition, although no changes were observed in the concentrations of PGE2 during this interval. The levels of PGF2 alpha increased in the tissues of the two largest preovulatory follicles and the two most recently ruptured follicles during the 12-h period before a midsequence oviposition, while there was no change or a decrease in PGE2 levels in these tissues during the same interval. In contrast, the concentration of PGF2 alpha did not increase during the 12-h period preceding the terminal oviposition of the sequence in plasma from the brachial, uterine, or follicular veins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The antiinflammatory agents diclofenac, fenoprofen and aspirin were tested to determine how well they inhibit the pre-ovulatory elevation in prostaglandin (PG) production in rabbit follicles in comparison to indomethacin. In addition, the antiinflammatory agent dexamethasone and the antipyretic agent acetaminophen were tested. The agents were administered 8 h after the ovulatory process was stimulated by hCG (50 I.U./kg). At 10 h after hCG (i.e., at the expected time of ovulation) control follicles had PGF and PGE levels of 370.0 and 582.6 pg/mg of follicle, respectively. Diclofenac inhibited PG production the most-reducing PGF and PGE to 22.8 and 53.6 pg/mg, respectively. Indomethacin reduced the PGF and PGE levels to 27.4 and 76.6 pg/mg, respectively. Fenoprofen was less effective, reducing the PGF and PGE to 77.8 and 222.4 pg/mg, respectively. Aspirin reduced the PGF and PGE to 123.4 and 174.6 pg/mg, respectively. Dexamethasone and acetaminophen did not inhibit PG production. Ovulation was completely inhibited by diclofenac and indomethacin, partially inhibited by fenoprofen, and unaffected by aspirin, acetaminophen, or dexamethasone. The results suggest that any potent antiinflammatory agent can inhibit ovulation provided it adequately reduces PG production; whereas antiinflammatory agents are ineffective. The anti-inflammatory agent must completely abolish the preovulatory elevation in PGs in mature follicles in order to totally inhibit ovultion.  相似文献   

7.
In the past two decades there have been innumerable reports that prostaglandins (PGs) are essential for mammalian ovulation. However, we have recently found that a relatively low dose of 0.03 mg indomethacin (INDO) sc to PMSG/hCG-primed immature Wistar rats can significantly reduce ovarian PG levels without inhibiting the control ovulation rate of 60+ ova/rat (1-3). In view of this information, the present study was an effort to duplicate the earlier reports that PGs can reverse the "inhibitory" effect of INDO on ovulation. In control animals, which received PMSG and hCG only, the ovulation rate was 63.8 +/- 4.5 ova/rat. This rate was reduced to 4.1 +/- 1.1 ova/rat when the animals were injected with 1.0 mg INDO at 3 h after hCG. In no instance was this inhibition reversed when the animals were treated with 1.0 mg of PGE2 or PGF2 alpha, or a combination of both prostanoids in either a single dose at 3 h after hCG, or in 4x doses at 2-h intervals beginning at 3 h after hCG. Furthermore, in animals that did not receive INDO, the ovulation rate in PGE2-treated animals was reduced to 20.0 +/- 6.7 ova/rat, and in animals treated with PGE2 and PGF2 alpha (combined) it was reduced to 19.4 +/- 6.5 ova/rat. In summary, not only did the PGs fail to reverse the anti-ovulatory effect of INDO, PGE2 actually suppressed the ovulation rate.  相似文献   

8.
A luteotropic role for prostaglandins (PGs) during the luteal phase of the menstrual cycle of rhesus monkeys was suggested by the observation that intraluteal infusion of a PG synthesis inhibitor caused premature luteolysis. This study was designed to identify PGs that promote luteal function in primates. First, the effects of various PGs on progesterone (P) production by macaque luteal cells were examined in vitro. Collagenase-dispersed luteal cells from midluteal phase of the menstrual cycle (Day 6-7 after the estimated surge of LH, n = 3) were incubated with 0-5,000 ng/ml PGE2, PGD, 6 beta PGI1 (a stable analogue of PGI2), PGA2, or PGF2 alpha alone or with hCG (100 ng/ml). PGE2, PGD2, and 6 beta PGI1 alone stimulated (p less than 0.05) P production to a similar extent (2- to 3-fold over basal) as hCG alone, whereas PGA2 and PGF2 alpha alone had no effect on P production. Stimulation (p less than 0.05) of P synthesis by PGE2, PGD2, and 6 beta PGI1 in combination with hCG was similar to that of hCG alone. Whereas PGA2 inhibited gonadotropin-induced P production (p less than 0.05), that in the presence of PGF2 alpha plus hCG tended (p = 0.05) to remain elevated. Second, the effects of various PGs on P production during chronic infusion into the CL were studied in vivo. Saline with or without 0.1% BSA (n = 12), PGE2 (300 ng/h; n = 4), PGD2 (300 ng/h; n = 4), 6 beta PGI1 (500 ng/h; n = 3), PGA2 (300 ng/h; n = 4), or PGF2 alpha (10 ng/h; n = 8) was infused via osmotic minipump beginning at midluteal phase (Days 5-8 after the estimated LH surge) until menses. In addition, the same dose of PGE, PGD, PGI, or PGA was infused in combination with PGF2 alpha (n = 3-4/group) for 7 days. P levels over 5 days preceding treatment were not different among groups. In 5 of 8 monkeys receiving PGF2 alpha alone, P declined to less than 0.5 ng/ml within 72 h after initiation of infusion and was lower (p less than 0.05) than controls. The length of the luteal phase in PGF2 alpha-infused monkeys was shortened (12.3 +/- 0.9 days; mean +/- SEM, n = 8; p less than 0.05) compared to controls (15.8 +/- 0.5). Intraluteal infusion of PGE, PGD, PGI, or PGA alone did not affect patterns of circulating P or luteal phase length.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Follicles were dissected from the ovaries of immature rats at intervals after subcutaneous injection of 20 IU of pregnant mare's serum gonadotropin. A surge of luteinizing hormone was observed at 54 h and ovulation occurred at 64-66 h. The follicular volume between 36 and 48 h, then doubled again shortly before ovulation. The collagen content of the follicles increased 3-fold from 35 to 56 h, but decreased significantly (25%) from 61 to 66 h. Follicle homogenates, activated with trypsin or aminophenylmercuric acetate, digested Type I collagen at 28 degrees C to produce typical of a true collagenase. Collagenolytic activity assayed against endogenous collagen at 37 degrees C did not change significantly between 38 and 66 h.  相似文献   

10.
The role of prostaglandins (PGs) in liver injury induced by D-galactosamine was investigated in the rat. The contents of PGD2 and PGF2 alpha in the liver were significantly increased from 3 h and 24 h after the D-galactosamine administration, respectively, but that of PGE2 was not significantly changed. Administration of 16,16-dimethyl PGE2, a long acting derivative of PGE2, or indomethacin, but not 16,16-dimethyl PGF2 alpha, a long acting derivative of PGF2 alpha, significantly depressed the increase in the serum transaminase activities induced by D-galactosamine. The protective effect of indomethacin was not disturbed by the 16, 16-dimethyl PGF2 alpha administration. These results indicate that PGE2 has a cytoprotective effect against the D-galactosamine induced liver injury and suggest that the protective effect of indomethacin is ascribable to its suppression of synthesis of PGs other than PGE2 or PGF2 alpha, e.g., PGD2.  相似文献   

11.
Indomethacin, an inhibitor of prostaglandin (PG) synthetase, will block uterine muscle electromyographic activity (EMG activity) and oviposition at a midsequence oviposition and ovulation in domestic hens, but does not block the increase in EMG activity associated with the first ovulation of a sequence. To assess the potential relationship between prostaglandin release from the ovarian follicles and EMG activity in egg-laying hens, we determined the concentrations of PGF2 alpha, 13,14-dihydro-15-keto-PGF2 alpha (PGFM), and PGE2 in brachial, ovarian follicular and uterine venous plasma and tissues in relation to uterine muscle EMG activity at the first ovulation and at a midsequence oviposition. The concentrations were measured after an i.m. injection (25 mg/hen) of indomethacin. In control hens sampled hourly, beginning 4 h before the peak of EMG activity at the first ovulation of a sequence, there was a sharp increase (p less than 0.05) in concentrations of PGF2 alpha and PGFM in brachial vein plasma coincident with the increase (p less than 0.05) in uterine EMG activity. Hens pretreated with indomethacin also had increased plasma PGF2 alpha and PGFM levels (p less than 0.05) in brachial vein plasma and increased uterine EMG activity (p less than 0.05) at this time. Indomethacin treatment lowered but did not eliminate mean levels of PGF2 alpha in the venous effluent from the largest preovulatory follicle at the first ovulation (36.0 +/- 9.9 ng/ml vs. 14.4 +/- 1.8 ng/ml).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
W J Murdoch 《Prostaglandins》1989,37(3):331-334
The antiinflammatory steroid, prednisolone, was administered to sheep during the preovulatory period. The drug did not produce a blockade of follicular rupture. However, prednisolone negated a rise in production of prostaglandin (PG) F2 alpha characteristic of preovulatory follicles. Indomethacin, a nonsteroidal antiinflammatory agent, was 100% effective in preventing ovulation. Levels of PGF2 alpha within follicular tissue were very low following treatment with indomethacin. These findings indicate that ovulation can occur in the absence of a preovulatory elevation in follicular accumulation of PGF2 alpha. Potency of antiinflammatory drugs as inhibitors of ovulation appears to hinge upon their ability to cause a marked suppression in follicular synthesis of prostaglandins.  相似文献   

13.
Z Zhang  D L Davis 《Prostaglandins》1991,42(2):151-162
Prostaglandins (PGs) are believed to play important roles in the establishment of pregnancy. Glandular and stromal cells were isolated from pig endometrium on days 11 through 19 of pregnancy and cultured in the presence of estradiol-17 beta (E2) and progesterone (P4) to determine the effect of day of pregnancy and steroids on the secretion of PGE and PGF2 alpha. Estradiol at concentrations between .01 and 1 microM did not affect PGE and PGF2 alpha secretion into the medium by glandular and stromal cells. Progesterone (.1 microM) suppressed (P less than .001) PGE and PGF2 alpha production from both cell types. Glandular cells secreted more (P less than .01) PGF2 alpha than PGE, whereas stromal cells collected on days 11, 12, 13, and 19 secreted more (P less than .05) PGE than PGF2 alpha. Stromal cells isolated from tissues collected on day 13 of pregnancy produced PGs with higher (P less than .01) PGE:PGF2 alpha ratio than those from tissues harvested on other days of pregnancy. Glandular cells isolated from tissues collected on days 13 and 19 and stromal cells isolated from tissue collected on day 13 of pregnancy secreted more (P less than .05) PGE and PGF2 alpha than cells isolated on other days of pregnancy. We conclude that: 1) P4 has a suppressing effect on PG secretion; 2) endometrial glandular and stromal cells each produce a unique profile of PGs; and 3) endometrial cells harvested on different days of pregnancy secrete different amounts of PGE and PGF2 alpha.  相似文献   

14.
Prostaglandins and preovulatory follicular maturation in mice   总被引:1,自引:0,他引:1  
Experiments have been carried out in an effort to reverse the indomethacin-induced inhibition of preovulatory follicular development in immature superovulated mice utilizing prostaglandins E2 and F2 alpha. All mice were primed with 5 IU pregnant mare's serum gonadotropin followed 40 h later by 80 IU luteinizing hormone (LH). Animals were sacrificed 10 1/2 or 11 1/2-12 h post-LH, at which time ovaries were fixed and prepared for microscopic observation. Control mice receiving both indomethacin and prostaglandin (PG) vehicles averaged 92% germinal vesicle breakdown, and 82% of maturing oocytes were surrounded by an expanded cumulus oophorus. Ovarian weight increased by 29% and the apical walls of preovulatory follicles demonstrated appreciable thinning following LH administration. In mice receiving indomethacin plus PG vehicle, follicular maturation was suppressed in a dose-dependent manner; in mice receiving 10 mg/kg, less than 50% of the oocytes resumed meiosis and, of these, only 9% were accompanied by cumulus expansion. Ovarian weight gain was also inhibited, and the apical follicle wall exhibited few signs of preovulatory thinning. PGE2 and PGF2 alpha both reversed the inhibition of cumulus and oocyte maturation induced by indomethacin, though PGE2 was more effective. Only PGF2 alpha promoted apical follicular thinning, and neither PG had a significant effect on ovarian weight. We conclude that, in mice, PGs may play an integral role during preovulatory maturation of the oocyte and cumulus, as well as thinning of the apical wall.  相似文献   

15.
Prepubertal gilts were treated with 750 IU pregnant mares' serum gonadotropin (PMSG) and 72 h later with 500 IU human chorionic gonadotropin (hCG) to induce follicular growth and ovulation. Dispersed granulosa (GC) and theca interna (TIC) cells were prepared by microdissection and enzymatic digestion from follicles obtained 36, 72 and 108 h after PMSG treatment and incubated for up to 6 h in a chemically defined medium in the presence or absence of arachidonic acid, follicle-stimulating hormone (FSH), luteinizing hormone (LH) and indomethacin. Production of prostaglandin E2 (PGE) and prostaglandin F2 alpha (PGF) was measured by radioimmunoassay. Both GC and TIC had the capacity to produce prostaglandins, with production by each cell type increasing markedly with follicular maturation. PGE was the major prostaglandin produced by both cellular compartments. Only PGE production by GC was consistently enhanced by addition of arachidonic acid to the incubation medium. Neither cell type was responsive to FSH and LH in vitro. Indomethacin inhibited the production of PGE and PGF by both cell types. These results provide convincing evidence for an intrafollicular source of prostaglandins and indicate that both cellular compartments contribute significantly to the increased production of prostaglandins associated with follicular rupture.  相似文献   

16.
The present study has been performed to investigate how PGs would participate the hatching process. Effects of indomethacin, an antagonist to PGs biosynthesis, on the hatching of mouse blastocysts were examined in vitro. Furthermore, it was studied that prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2 alpha) or 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) were added to the culture media with indomethacin. The hatching was inhibited by indomethacin yet the inhibition was reversible. In the groups with indomethacin and PGE2, no improvement was seen in the inhibition of hatching and the inhibition was irreversible. In the groups with indomethacin and PGF2 alpha, inhibition of hatching was improved in comparison with the group with indomethacin. In the groups with indomethacin and 6-keto-PGF1 alpha, no improvement was seen. The above results indicated that PGF2 alpha possibly had an accelerating effect on hatching and a high concentration of PGE2 would exert cytotoxic effect on blastocysts.  相似文献   

17.
We attempted to explore possible mechanism(s) subserving the influence of oxytocin on uterine motility by studying the action of the hormone on: 1) the contractile activity of isolated rat uteri in the presence or absence of indomethacin; 2) the synthesis and release of prostaglandins (PGs) into the solution incubating the uterine tissue as well as the metabolism of labelled arachidonic acid; 3) the uptake of 45Ca2+ by uterine strips. The experiments were bone with uterine preparations isolated from spayed rats treated or not with 17-beta-estradiol. The values of isometric developed tension (IDT) and of frequency of contractions (FC) induced by oxytocin in uterine strips isolated from spayed and spayed-estrogenized rats, were not modified by indomethacin at 10(-6) M. On the other hand, uterine strips from untreated spayed rats, release into the incubating medium approximately equal amounts of PGE1, PGE2 and PGF2 alpha. The in vitro presence of oxytocin (50 mU/ml) increased significantly (p 0.05) the output of PGF 2 alpha without changing the release of PGE1 or PGE2. Uteri from spayed rats injected prior to sacrifice with 17-beta-estradiol released significantly less PGE1 and PGE2 (p less than 0.005) than preparations from non-injected animals, whereas the output of PGF2 alpha in the suspending solution remained unchanged. Following estrogenization the addition of oxytocin to preparations obtained from spayed-estrogenized rats also increased the output of uterine PGF2 alpha (p less than 0.001) without changing that of PGs E1 or E2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The cyclic patterns of hormones which regulate the activity of the oviduct in the cow have not been adequately reported. We studied progesterone (P4), estradiol 17 beta (E2), prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2 alpha), oxytocin (OT) and endothelin-1 (ET-1) concentrations in the cow oviduct. Reproductive tracts from cyclic Holstein cows in the follicular phase (n = 5), post ovulation phase (n = 5) and luteal phase (n = 5) were collected at a slaughterhouse. Oviducts were separated from the uterus, the lumen vas washed with physiological saline, and the enveloping connective tissues were removed. The fimbria was then separated at first and then the rest was divided into 2 parts of equal length (proximal and distal). After extraction, levels of different hormones in the tissues were measured using double antibody enzyme immunoassays (EIAs). There were no differences in any hormone concentration between the 3 parts of the oviduct at any stage of the estrous cycle. The highest concentration of oviductal P4 was observed during the luteal phase and in the oviduct ipsilateral to the functioning CL. Oviductal OT was unchanged throughout the cycle. The highest E2 concentration was observed during the follicular phase in the oviduct ipsilateral to the dominant follicle. The oviduct ipsilateral to the dominant follicle during the follicular phase and ipsilateral to the ovulation site post ovulation showed higher levels of PGE2, PGF2 alpha and ET-1 than those on the contralateral side or during the luteal phase. The highest PGE2 was observed in the oviduct ipsilateral to the ovulation site during the post ovulation phase. The results suggest that the ovarian products (P4, OT and E2) and the local oviductal products (PGE2, PGF2 alpha, and ET-1) may synergistically control oviductal contraction for optimal embryo transport during the periovulatory period, and provide further evidence for the local delivery of ovarian steroids to the adjacent reproductive tract.  相似文献   

19.
Concurrent changes in concentrations of a product of the cyclooxygenase (prostaglandin [PG] F2 alpha) and lipoxygenase (leukotriene [LT] B4) routes of metabolism of arachidonic acid were measured by radioimmunoassay within the wall of periovulatory ovine follicles. Increased concentrations of PGF2 alpha were detected within follicles before, during and following the time of ovulation. A significant rise in LTB4 was not observed until after follicular rupture had occurred. Inhibition of synthesis of PGF2 alpha by indomethacin was associated with a complete blockade of ovulation. Nordihydroguaiaretic acid, an inhibitor of 5-lipoxygenase, had no effect on ovulation. Periovulatory administration of either drug did not alter sera profiles of progesterone during subsequent luteal phases. These results reconfirm the importance of the cyclooxygenase system in the mechanism of ovulation. It does not appear that follicular LTB4 is a key component in the processes of ovulation or luteinization in sheep.  相似文献   

20.
The effects of PGE2, PGF2alpha, trilostane, RU-486, PA, INDO, MER-25, PGE2, or PGF2alpha + PA on secretion of progesterone, PGE2, or PGF2alpha by bovine corpora lutea (CL) of mid-pregnancy in vitro for 4 and 8 hr was examined. Secretion of PGE2 and PGF2alpha increased with time in culture (P < or = 0.05). PGE2 and PGE2 + PA increased (P < or = 0.05) secretion of progesterone at 4 and 8 h, progesterone secretion was increased (P < or = 0.05) at 4 h; but not at 8 h (P > or = 0.05) by trilostane, mifepristone, PGF2alpha and PGF2alpha + PA, and was decreased at 8 h by PGF2alpha and PGF2alpha + PA. Indomethacin decreased (P < or = 0.05) secretion of PGE2, PGF2alpha, and progesterone at 4 and 8 h. Trilostane, PA, PGF2alpha, RU-486 and PGF2alpha + PA increased (P < or = 0.05) PGE2 at 4 h only. Palmitic acid decreased (P < or = 0.05) PGF2alpha at 4 h, while trilostane, RU-486, or MER-25 did not affect (P < or = 0.05) PGE2 of PGF2alpha secretion. It is concluded that PGE2 of luteal tissue origin is the luteotropin at mid-pregnancy in cows. Also, it is suggested that PA may alter progesterone secretion by affecting the inter conversion of PGE2 and PGF2alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号