首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Mass spectrometry is a powerful alternative to antibody-based methods for the analysis of histone post-translational modifications (marks). A key development in this approach was the deliberate propionylation of histones to improve sequence coverage across the lysine-rich and hydrophilic tails that bear most modifications. Several marks continue to be problematic however, particularly di- and tri-methylated lysine 4 of histone H3 which we found to be subject to substantial and selective losses during sample preparation and liquid chromatography-mass spectrometry. We developed a new method employing a “one-pot” hybrid chemical derivatization of histones, whereby an initial conversion of free lysines to their propionylated forms under mild aqueous conditions is followed by trypsin digestion and labeling of new peptide N termini with phenyl isocyanate. High resolution mass spectrometry was used to collect qualitative and quantitative data, and a novel web-based software application (Fishtones) was developed for viewing and quantifying histone marks in the resulting data sets. Recoveries of 53 methyl, acetyl, and phosphoryl marks on histone H3.1 were improved by an average of threefold overall, and over 50-fold for H3K4 di- and tri-methyl marks. The power of this workflow for epigenetic research and drug discovery was demonstrated by measuring quantitative changes in H3K4 trimethylation induced by small molecule inhibitors of lysine demethylases and siRNA knockdown of epigenetic modifiers ASH2L and WDR5.The field of Epigenetics has become important in drug discovery as many diseases have been linked to aberrations in chromatin and changes of histone post-translational modifications (PTMs)1 (1, 2). The core histones (H2A, H2B, H3, and H4 and their variants) undergo a multitude of PTMs. Some, like lysine acetylation, lysine mono-, di-, and trimethlyation, and serine/threonine phosphorylation are well documented, with over 100 distinct, albeit generally low abundance, modifications reported for H3 alone (3). Mass spectrometry provides an alternative to antibody-based methods for detecting and quantifying histone PTMs, as the latter are prone to problems of specificity and epitope occlusion (4, 5). The most commonly applied approach to date is known as “bottom-up” mass spectrometry and involves an initial processing of the histones into smaller peptides (6). A key development in histone PTM analysis was the deliberate chemical modification of histone tail lysines by propionic anhydride, preventing digestion of these Lys- and Arg-rich domains into peptides too short or hydrophilic to be detected in reverse-phase liquid chromatography-mass spectrometry experiments (79).Despite this advance, some marks like H3K4 di- and tri-methylation remain problematic; in several examples from the recent literature the H3K4me3 mark is detected either only by means of specifically targeted methods (5), with larger quantitative variation than other marks (10), or not reported among detected marks at all (3, 1113). Alternative approaches include top-down or middle-down mass spectrometry, in which entire histones, or large segments thereof are analyzed directly (1416), but these techniques still suffer from relatively poor sensitivity in comparison to bottom-up workflows, and must contend with the full combinatorial complexity of histone PTMs (17).The H3K4me3 mark is of low natural abundance, having a very restricted genomic localization strongly associated with active gene promotors and enhancers (18, 19), and aberrant activities of writers and erasers of that mark are associated with a variety of diseases (1, 2). Difficulties in its quantitation thus hinder the investigation of both fundamental biology and the discovery of lifesaving drugs. We therefore undertook a re-evaluation of the bottom-up histone PTM workflow, streamlining sample preparation and investigating sources of bias or sample loss. Alternatives to the standard propionylation technique were also explored, resulting in a new hybrid chemical modification workflow yielding across-the-board improvements in recovery of peptides from the N-terminal tail of histone H3, and dramatically improved detection of hydrophilic peptides with marks like H3K4me2/me3.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号