首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Abstract. Germination responses of redroot pigweed ( Amaranthus retroflexus L.) seeds to ethylene were determined at 25, 30, 35, or 40° C after preincubation at various temperatures (15–35° C) for different periods (0.5–32 d). After 7 d preincubation, seeds showed a log-linear germination response to ethylene concentration in most of the temperature treatments. Sensitivity to ethylene increased with longer preincubation; response thresholds of 0.03−0.09 cm3 m−3 were observed after 32 d, compared to 0.18−1.6 cm3 m−3 after 7 d of preincubation. Preincubation at 15 or 20° C generally enhanced germinability, whereas 25 or 30° C produced secondary dormancy, which was readily broken with ethylene. Temperature during preincubation also significantly influenced the slope of the dose-response curve. The responses of preincubated redroot pigweed seeds to ethylene suggested that, in the field, seeds would probably not lose their sensitivity to this gas during prolonged burial in soil.  相似文献   

2.
Abstract. The effects of diurnally alternating temperatures and of prolonged burial in the soil on germination response of redroot pigweed ( Amaranthus retroflexus L.) seeds to ethylene were investigated. Percentage germination in a 12 h/12 h, 23° C/35° C temperature regime roughly equalled that observed at constant 35° C, and greatly exceeded that observed at 30°C. Preincubation for 61 d in alternating temperatures, which were gradually increased to simulate soil warming in spring, caused little germination in the absence of ethylene, but considerably enhanced sensitivity to ethylene. Seeds kept in soil in the same temperature regime failed to show the response to ethylene, and the soil itself removed ethylene from the soil atmosphere.
After burial in a field plot either over winter or during the summer, seeds had a very low ethylene response threshold (0.01−0.05 cm3 m−3) and strong response to ethylene (70–95% germination at 51 cm3 m−3 compared to 1–20% without ethylene). Germinability of seeds buried overwinter declined between 10 May (85%) and 24 May (7%), and 90% of those recovered on or after 24 May had a visible rupture in the seed coat. Apparently, germination had begun during burial, but was arrested by unknown causes in an early phase and was followed by seed deterioration.
Although the role of ethylene in germination of buried seeds remains uncertain, the greatly enhanced sensitivity to ethylene observed in pigweed seeds after burial deserves further investigation.  相似文献   

3.
1. One temperature shift from 20 to 30°C in darkness induces 30–40% germination in Rumex obtusifolius seeds. The same germination percentages are found with heat treatment varying between 1 and 6h duration, indicating that the total heat sum of the temperature shift is not important.
2. Germination is greatly enhanced by three consecutive heat shifts of 1h at 30°C separated by 1h periods at 20°C.
3. The seeds are activated to a small extent after a slow warming (+2°Ch–1) from 20 to 30°C, followed by incubation for 1h at 30°C. Germination is much higher after rapid heating (+10°Ch–1) to 30°C, followed by 1h incubation at this temperature. Repeated fast heating treatments on four consecutive days enhances germination. Moderately rapid heatings (+3·3°Ch–1) give intermediate results.
4. The rate of cooling does not influence the germination percentage. Cooling alone cannot induce germination.
5. Heating alone from 15 to 25°C without cooling also activates germination. In this temperature range the seeds are more activated by rapid warming than by slow warming.
6. The ecological relevance of the response to different warming rate is discussed. The insensitivity of seeds to a slow warming might keep deeply buried seeds in a dormant stage.  相似文献   

4.
Conversion of exogenous 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene was studied in sunflower (Helianthus annuus L., cv. Mirasol) seeds in relation to germinability. Ethylene production from ACC decreased during seed maturation, and non-dormant mature seeds were practically unable to synthesize ethylene until germination and growth occurred, indicating that ethylene forming enzyme (EFE) activity developed during tissue imbibition and growth. ACC conversion to ethylene was reduced by the presence of pericarp, and in young seedlings it was less in cotyledons than in growing axes.ACC conversion to ethylene by cotyledons from young seedlings was optimal at c. 30°C, and was strongly inhibited at 45°C. Pretreatment of imbibed seeds at high temperature (45°C) induced a thermodormancy and a progressive decrease in EFE activity.Abscisic acid and methyl-jasmonate, two growth regulators which inhibit seed germination and seedling growth, and cycloheximide were also shown to inhibit ACC conversion to ethylene by cotyledons of 3-day-old seedlings and by inbibed seeds.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - CH cycloheximide - EFE ethylene forming enzyme - IAA indole-3-acetic acid - Me-Ja methyl-jasmonate  相似文献   

5.
The allelopathic potential of the dry fruits of Washingtonia filifera (L. Linden) H. Wendl. was investigated. Leachates from fruits inhibited the germination of lettuce, wheat, red cabbage and cucumber seeds. The inhibitory effect was partly neutralized by kinetin (20 mg 1−1) and gibberellic acid (50 mg 1−1). The effect of kinetin was more pronounced at 25°C than at 20°C. Substances inhibiting germination were localized in the pericarp of the fruit and were resistant to high temperature.  相似文献   

6.
Portulaca oleracea , a C4 species, is reported to be a serious weed in 45 crops in 81 countries. Experiments were conducted in the laboratory, the screenhouse and the field to determine the influence of environmental factors on seed germination and seedling emergence of P. oleracea . In the laboratory, germination in the dark was low and was not influenced by the tested temperatures (35/25°C, 30/20°C and 25/15°C alternating day/night temperatures). In the light/dark regime, however, germination was lower at 25/15°C and 35/25°C than at 30/20°C (70%, 75% and 81% germination, respectively). In conditions of 106 mM sodium chloride or −0.34 MPa osmotic potential, seeds germinated to only 50% of maximum germination of the control. Germination was not influenced by buffered pH solutions ranging from 5 to 9. In the screenhouse, germination was greatest for seeds placed on the soil surface, but emergence declined with increasing seed burial depth in soil; no seedlings emerged from the depth of 2 cm. Seedling emergence and seedling dry matter were markedly reduced by the addition of rice residue to the soil surface at rates equivalent to 4 to 6 t ha−1. In the field, seedling emergence of P. oleracea was greater under zero till (ZT) (17–20%) than under minimum tillage (6–10%), a likely reflection of low seed burial and exposure of seeds to light with a ZT system. This study identifies some of the factors enabling P. oleracea to be a widespread weed in the humid tropics, and the information could contribute to improved control strategies.  相似文献   

7.
Nonanoic acid, which inhibits germination in several seeds, enhanced ion efflux from embryonic axes of Cicer arietinum L., especially at temperatures above 25°C. Other short chain fatty acids had little effect on germination and ion leakage. Nonanoic acid also decreased uptake of 86Rb+ and 22Na+ and increased efflux of both isotopes from the embryonic axes into the incubation solution. Fusicoccin, which stimulates early germination in C. arietinum , counteracted the effects of nonanoic acid at both 25 and 30°C. These results suggest that nonanoic acid affects the integrity of plasmalemma and other membrane systems. Nonanoic acid thus inhibits cell elongation during early germination by disturbing ion exchange and inhibiting water uptake.  相似文献   

8.
The germination percentage of peach [ Prunus persica (L.) Batsch cv. Halford] seeds at 20°C was low (< 20%) after incubation at 5°C for as long as 35 days, but then increased considerably (> 40%) when the seeds were maintained at 5°C for longer than 42 days. Four zones of gibberellin-like activity were found in partially purified seed extracts. Gibberellin-like activity remained low in seeds incubated at 5°C for as long as 28 days, but increased significantly in three of these zones after 35 days, and in the fourth zone after 49 days. The increase in gibberellin-like activity was evident prior to the transfer of the seeds to 20°C. Moreover, seeds maintained at 5°C germinated at this temperature after 63 days. For seeds incubated and germinated at 20°C, both the germination percentage and the gibberellin-like activity remained low throughout the experimental period. Application of the growth retardant paclobutrazol to seeds after 28 days of a 49 day total incubation period at 5°C did not substantially reduce seed germination, although the increase in gibberellin-like activity was prevented. Seeds did, however, require a longer time to germinate after transfer to 20°C and were dwarfed in appearance. Application of GA3 to seeds prior to stratification increased the percentage germination of seeds only when they had been incubated at 5°C for at least 35 days. The major changes in gibberellin-like activity are, therefore, associated not so much with the processes which allow germination to take place in peach, but more with those processes which allow normal growth and development of the seedling.  相似文献   

9.
The effect of the plant growth retardants ancymidol. mefluidide and uniconazole on germination of two melon accessions differing in their ability to germinate at 14°C was examined. The accessions were the cold sensitive Noy Yizre'el and the cold tolerant Persia 202. The three growth retardants were able to delay the germination of intact Noy Yizre'el seeds, but did not affect that of intact Persia 202 seeds. On the other hand germination of decoated seeds of both accessions was unaffected by these inhibitors at normal oxygen concentration, but was inhibited at 5% oxygen. When gibberellin-like activity was measured by a dwarf rice biological assay following HPLC fractionation, it was found that seeds of Persia 202 contained much more gibberellin-like activity than Noy Yizre'el seeds. Among the extracted compounds several endogenous gibberellins were identified by combined gas chromatography-mass spectrometry (GC-MS). They included GA4, GA20, GA1 and GA3 in Noy Yizre'el and GA34, GA20, GA1 and GA8 in Persia 202. It is suggested that the better germination of intact Persia 202 seeds, compared to Noy Yizre'el seeds at low temperature and low oxygen concentration, is due to a higher endogenous level of GA and a better seed coat permeability to oxygen.  相似文献   

10.
Elevated CO2 appears to be a significant factor in global warming, which will likely lead to drought conditions in many areas. Few studies have considered the interactive effects of higher CO2, temperature and drought on plant growth and physiology. We grew canola ( Brassica napus cv. 45H72) plants under lower (22/18°C) and higher (28/24°C) temperature regimes in controlled-environment chambers at ambient (370 μmol mol−1) and elevated (740 μmol mol−1) CO2 levels. One half of the plants were watered to field capacity and the other half at wilting point. In three separate experiments, we determined growth, various physiological parameters and content of abscisic acid (ABA), indole-3-acetic acid and ethylene. Drought-stressed plants grown under higher temperature at ambient CO2 had decreased stem height and diameter, leaf number and area, dry matter, leaf area ratio, shoot/root weight ratio, net CO2 assimilation and chlorophyll fluorescence. However, these plants had increased specific leaf weight, leaf weight ratio and chlorophyll concentration. Elevated CO2 generally had the opposite effect, and partially reversed the inhibitory effects of higher temperature and drought on leaf dry weight accumulation. This study showed that higher temperature and drought inhibit many processes but elevated CO2 partially mitigate some adverse effects. As expected, drought stress increased ABA but higher temperature inhibited the ability of plants to produce ABA in response to drought.  相似文献   

11.
A population of Rumex obtusifolius L. seeds imbibed for 24 h at 25°C exhibits a sigmoid logarithmic fluence-response relationship for stimulation of germination by red light (R), 11.0 μmol m−2 being necessary for 50% of the response. After 24 h imbibition at 35°C the fluence-response relationship for stimulation of germination by R is biphasic. For 50% response the very sensitive phase (very low fluence-response) requires 4.7 − 10−2μmol m−2 whereas the less sensitive phase (low fluence-response) requires 4.0 μmol m2. A few seconds of far-red light (FR) satisfies the germination requirement of the sensitive seeds after 24 h at 35°C. However, a longer period of FR (2 h) results in low germination. The fluence-response relationship for induction of these seeds by R is sigmoid, 4.8 μmol m−2 being necessary for 50% response, demonstrating that 2 h FR desensitizes the sensitive proportion of the seed population induced by 24 h at 35°C. A proportion of the seed population can be further sensitized by 60 min at 35°C following this desensitization.  相似文献   

12.
Grand Rapids lettuce ( Lactuca saliva L.) seeds entered into a state of secondary dormancy (thermodormancy) when they were imbibed at 40°C for 72 h. The effect of 40°C in inducing thermodormancy was largely reduced by imbibing seeds at 40°C in solutions of polyethylene glycol (PEG), mannitol and NaCl. Despite similar water potentials of solutions, NaCl pretreatment was more effective. Subsequent germination in the dark at 25°C of saline, high-temperature-pretreated seeds required only gibberellic acid (GA3), as was the case with nonthermodormant seeds. Thermodormancy reduced total respiratory capacity (VT) and increased the ratio of alternate pathway (Valt) to cytochrome pathway (Vcyt) respiration. This was prevented by saline pretreatment. Ethylene production and protein synthesis were depressed in thermodormant seeds, and this was partly alleviated by saline pretreatment. The patterns of protein synthesis in saline- and nonsaline-freated seeds at 40°C were similar, differing only in that the saline treated seeds produced in addition a 78 kDa polypeptide. The pattern of protein synthesis at 40°C differed significantly from that at 25°C.  相似文献   

13.
The phenolic acids and abscisic acid (ABA) of sugar pine ( Pinus lambertiana Dougl.) embryos and megagametophytes, separated by high-pressure liquid chromatography, were analyzed during 90 days stratification of the seeds. The phenolic acids occurred mainly as glycosides. Following hydrolysis, the majority of phenolics present could be identified as common benzoic and ciranamic acid derivatives. Levels of phenolic acids were relatively low in dormant seeds, but increased substantially in the embryos during stratification at 5°C, particularly cinnamic acid, p -coumaric acid, ferulic acid, and one unknown. This active synthesis during stratification did not support an inhibitory function for phenolic acids. During stratification at 5°C, changes in ABA levels in both tissues followed a triphasic pattern, with no loss during the first 30 days, a significant decrease the second 30 days, and a lesser decrease the last 30 days. Loss of ABA from moist seeds at 25°C occurred three times as rapidly, so that by 30 days the ABA level of these seeds was equivalent to that of seeds stratified 90 days at 5°C; however, dormancy was not alleviated at 25°C. Application of exogenous ABA (10−7 to 10−4M) to stratified seeds did not significantly reduce germination. Together, the above results did not support a primary role for ABA in the maintenance of dormancy in sugar pines.
A correlated increase in phenylpropanoid metabolism and respiratory capacity with increased germinability during stratification suggests that loss of dormancy may be more closely dependent on increased levels of growth promoters or shifts in metabolic pathways.  相似文献   

14.
15.
Germination of nondormant seeds of Manfreda brachystachya (Agavaceae) was analyzed at temperatures ranging from 11–35°C. Maximum germination (95%) occurred at 25°C. An exponential sigmoid relationship was found between time and cumulative germination. Germination rate for every subpopulation (10–90% germination) was estimated by means of a normal distribution analysis. The kurtosis indicated die amplitude of the range of temperatures where the highest germination rates were concentrated, and the skew indicated sharply inhibitory temperatures in the range of temperatures used. Based on analysis of the normal distribution models for each subpopulation, we calculated a theoretical function which described germination rate over the temperature range considered: F(T,χ) = A × exp[−B(C−1)2], where A is the function that describes germination rate for each subpopulation (characterized by the percentage [χ] at optimal temperature); B is a shape parameter, 1/(σG2); and C is the ratio between each germination temperature (T) and the optimal germination temperature. The Gaussian curves were used to calculate thermal time, and base and ceiling temperatures. Germination thermal time ranged from 1 333 to 2 373°C h, and base and ceiling temperatures were 10.44 ± 0.7°C and 39.54 ± 0.7°C, respectively. There was a linear relationship between thermal time and cumulative percentage of germination of the subpopulations. Based on fitted curves for each subpopulation, the use of a general model for all the subpopulations has been proven: F8 = A × exp[−5.9437(C−1)2], where changes in the curves for each subpopulation depended on temperature only.  相似文献   

16.
Germination of nondormant seeds of Manfreda brachystachya (Agavaceae) was analyzed at temperatures ranging from 11–35°C. Maximum germination (95%) occurred at 25°C. An exponential sigmoid relationship was found between time and cumulative germination. Germination rate for every subpopulation (10–90% germination) was estimated by means of a normal distribution analysis. The kurtosis indicated die amplitude of the range of temperatures where the highest germination rates were concentrated, and the skew indicated sharply inhibitory temperatures in the range of temperatures used. Based on analysis of the normal distribution models for each subpopulation, we calculated a theoretical function which described germination rate over the temperature range considered: F(T,x) = A × exp[-B(C−1)2], where A is the function that describes germination rate for each subpopulation (characterized by the percentage [x] at optimal temperature); B is a shape parameter, 1/(σ2); and C is the ratio between each germination temperature (T) and the optimal germination temperature. The Gaussian curves were used to calculate thermal time, and base and ceiling temperatures. Germination thermal time ranged from 1333 to 2373°C h, and base and ceiling temperatures were 10.44 ± 0.7°C and 39.54 ± 0.7°C, respectively. There was a linear relationship between thermal time and cumulative percentage of germination of the subpopulations. Based on fitted curves for each subpopulation, the use of a general model for all the subpopulations has been proven: F8 = A × exp[−5.9437(C−1)2], where changes in the curves for each subpopulation depended on temperature only.  相似文献   

17.
Germination in the dark and at 16°C of photoblastic and thermosensitive seeds of Phacelia tanacetifolia was inhibited when incubated with EGTA and the Ca2+-ionophore A 23187; A 23187 in the presence of Ca2+ still inhibited germination, but to a lesser extent. Treatments with EGTA or Ca2+ at different concentrations in the presence or in the absence of A 23187 did not remove light inhibition. The calmodulin (CaM) inhibitor, calmidazolium, strongly inhibited germination. The specificity of these inhibitors and their effects on seed germination are discussed.
CaM from Phacelia tanacetifolia seeds has been purified and its characteristics (molecular weight, heat and acid stability, kinetics of phosphodiesterase [EC 3.1.4.17] activation) were very similar to those of other plant sources. More than 90% of total CaM was present in the soluble fraction (ca 41 μg g-1 fresh weight in ungerminated seeds). The CaM level greatly increased in the early phases of seed germination; this increase did not take place when germination was inhibited by light or high temperature. When fusicoccin, a toxin which promotes germination by activating membrane functions, relieved light or high temperature inhibition, CaM increased up to the control value in the dark at 16°C. The parallel increase in CaM and seed germination suggest that CaM plays an important role in the process. Fusicoccin in the dark at 16°C stimulated CaM and fresh weight increase, but not the metabolic reactivation measured as increase in DNA and total RNA levels; at 30°C fusicoccin stimulated the increase in fresh weight and in CaM level, but the increases in DNA and total RNA were very low. These results suggest that the activation of membrane functions with cell enlargement induced by fusicoccin is related to CaM increase.  相似文献   

18.
Triacontanol at concentrations from 2.3 × 10-9 M to 2.3 × 10-7 M did not affect the germination of lettuce ( Lactuca sativa L., cv. Grand Rapids) seeds in darkness, stimulated by light at 25°C or by benzyladenine at 31°C. Stimulation of seed germination by gibberellin A3 (10-5 M ) was significantly inhibited by triacontanol; the most effective concentration was 4.6 × 10-8 M. Pulse experiments demonstrated that triacontanol was ineffective when applied later than gibberellin, whereas an inverse sequence of treatment caused an inhibition comparable to that resulting from continuous treatment of seeds with both factors. Possible interaction of triacontanol with gibberellin receptor is discussed.  相似文献   

19.
Abstract. The germination behaviour of two Petunia hybrida lines. M30 and Th7, and their reciprocal hybrids was studied. Two sets of experimental conditions appeared helped to distinguish between dormant and non-dormant parental lines: (1) 25 and 35 °C in the dark, in the latter case after 2 months of dry storage at 20 °C; (2) 35 and 40 °C in the light. Photosensitivity was tested in the first case and sensitivity to GA3 in the second case. The predominance of paternal control over dormancy was evident. A maternal or tegumentary control of photosensitivity and of sensitivity to GA3 was also shown. Transferring the seeds, originally imbibed in conditions expressing primary dormancy, to conditions which previously supported their germination, allowed us to show that secondary dormancy could be easily induced when a deeper primary dormancy had already developed in the seeds.  相似文献   

20.
Sunflower ( Helianthus annuus L.) seeds progressively lost their ability to germinate at 25°C, the optimal temperature for germination, after accelerated aging was carried out at 45°C (a temperature too high to permit germination) in water or at 76 or 100% relative humidity (RH). The deleterious effects of the high-temperature treatment increased with increasing seed moisture content. Incubation of seeds at 45°C in water resulted in electrolyte leakage, which indicated a loss of membrane integrity. A relationship between leakage and loss of seed viability could not be assumed, since no increase in electrolyte efflux occurred after aging al 100% RH. Accelerated aging induced accumulation of malondialdehyde, suggesting that seed deterioration was associated with lipid peroxidation. However, there was no direct relationship between lipid peroxidation and deterioration in membrane integrity. Loss of seed viability was also associated with a decrease in superoxide dismutase, catalase and glutathione reductase activities. Finally, the results obtained suggest that sunflower seed deterioration during accelerated aging is closely related to a decrease in the activities of detoxifying enzymes and to lipid peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号