首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hypertrophic cardiomyopathy (HCM) caused by mutations in cardiac myosin–binding protein-C (cMyBP-C) is a heterogenous disease in which the phenotypic presentation is influenced by genetic, environmental, and developmental factors. Though mouse models have been used extensively to study the contractile effects of cMyBP-C ablation, early postnatal hypertrophic and dilatory remodeling may overshadow primary contractile defects. The use of a murine engineered cardiac tissue (mECT) model of cMyBP-C ablation in the present study permits delineation of the primary contractile kinetic abnormalities in an intact tissue model under mechanical loading conditions in the absence of confounding remodeling events. We generated mechanically integrated mECT using isolated postnatal day 1 mouse cardiac cells from both wild-type (WT) and cMyBP-C–null hearts. After culturing for 1 wk to establish coordinated spontaneous contraction, we measured twitch force and Ca2+ transients at 37°C during pacing at 6 and 9 Hz, with and without dobutamine. Compared with WT, the cMyBP-C–null mECT demonstrated faster late contraction kinetics and significantly faster early relaxation kinetics with no difference in Ca2+ transient kinetics. Strikingly, the ability of cMyBP-C–null mECT to increase contractile kinetics in response to adrenergic stimulation and increased pacing frequency were severely impaired. We conclude that cMyBP-C ablation results in constitutively accelerated contractile kinetics with preserved peak force with minimal contractile kinetic reserve. These functional abnormalities precede the development of the hypertrophic phenotype and do not result from alterations in Ca2+ transient kinetics, suggesting that alterations in contractile velocity may serve as the primary functional trigger for the development of hypertrophy in this model of HCM. Our findings strongly support a mechanism in which cMyBP-C functions as a physiological brake on contraction by positioning myosin heads away from the thin filament, a constraint which is removed upon adrenergic stimulation or cMyBP-C ablation.  相似文献   

2.
3.
The possibility is suggested that cardiac aneurysms are formed when an infarcted region of the ventricular wall becomes elastically unstable and "blows out". The consequence of such a blowout could be a large saccular aneurysm or even cardiac rupture. We use a nonlinear stress-strain relation capable of describing both the passive and active myocardial wall to examine this possibility in terms of large-deformation membrane theory. Ventricular infarcts made of a material having physical properties like rubber would be expected to blow out, but those made of passive myocardium would not.  相似文献   

4.
Wnts are required for cardiogenesis but the role of specific Wnts in cardiac repair remains unknown. In this report, we show that a dynamic Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. Acute ischaemic cardiac injury upregulates Wnt1 that is initially expressed in the epicardium and subsequently by cardiac fibroblasts in the region of injury. Following cardiac injury, the epicardium is activated organ-wide in a Wnt-dependent manner, expands, undergoes epithelial-mesenchymal transition (EMT) to generate cardiac fibroblasts, which localize in the subepicardial space. The injured regions in the heart are Wnt responsive as well and Wnt1 induces cardiac fibroblasts to proliferate and express pro-fibrotic genes. Disruption of downstream Wnt signalling in epicardial cells decreases epicardial expansion, EMT and leads to impaired cardiac function and ventricular dilatation after cardiac injury. Furthermore, disruption of Wnt/βcatenin signalling in cardiac fibroblasts impairs wound healing and decreases cardiac performance as well. These findings reveal that a pro-fibrotic Wnt1/βcatenin injury response is critically required for preserving cardiac function after acute ischaemic cardiac injury.  相似文献   

5.
Ischemia–reperfusion (I/R) is associated with changes in energy metabolism in the heart. However, the majority of studies have focused on examining rates and extent of fatty acid (FA) oxidation, with limited emphasis on FA delivery. We examined the influence of acute myocardial I/R on coronary lipoprotein lipase (LPL), the key enzyme responsible for triglyceride-lipoprotein hydrolysis and FA delivery to the heart. In a whole animal and an ex vivo model of I/R, we demonstrate increases in luminal LPL activity, an effect that involved signaling through nitric oxide. Given the damaging effect of excess FA utilization by the ischemic heart, strategies to restrict LPL at the vascular lumen would be an attractive therapeutic option in limiting I/R related cardiac injury.  相似文献   

6.
Urocortin: a cardiac protective peptide?   总被引:2,自引:0,他引:2  
Urocortin (UCN), a member of the corticotropin-releasing hormone (CRH)-related peptides, has been reported to play biologically diverse roles in several systems such as cardiovascular, reproductive, appetite, stress, inflammatory responses, etc. In heart, it was reported to have protective effects. On the other hand, it was also reported to have cardiac inotropic and hypertrophic effects and hence to cause cardiac remodeling. This paper will review the effects of UCN in cardiac system.  相似文献   

7.

Objective

20 % of patients with a systemic RV are pacemaker dependent, and unsuitable to undergo cardiac magnetic resonance (CMR). Multidetector row computed tomography (MDCT) could provide a reproducible alternative to CMR in these patients. The aim of this study was to compare variability of MDCT with CMR.

Methods

Thirty-five patients with systemic RV underwent either MDCT (n = 15) or CMR (n = 20). Systemic RV volumes and ejection fraction were obtained, and intra- and interobserver variability for both modalities were assessed and compared.

Results

We found the intra- and interobserver variability of volumes and function measurements of the systemic RV obtained with MDCT to be higher compared with those obtained with CMR. However, these differences in variability were not significant, the only exception being the interobserver variability of systemic RV stroke volume.

Conclusions

MDCT provides a reproducible alternative to CMR for volumes and function assessment in patients with a systemic RV.  相似文献   

8.
M Gautel  O Zuffardi  A Freiburg    S Labeit 《The EMBO journal》1995,14(9):1952-1960
Cardiac myosin binding protein-C (cardiac MyBP-C, cardiac C protein) belongs to a family of proteins implicated in both regulatory and structural functions of striated muscle. For the cardiac isoform, regulatory phosphorylation in vivo by cAMP-dependent protein kinase (PKA) upon adrenergic stimulation is linked to modulation of cardiac contraction. The sequence of human cardiac MyBP-C now reveals regulatory motifs specific for this isoform. Site-directed mutagenesis identifies a LAGGGRRIS loop in the N-terminal region of cardiac MyBP-C as the key substrate site for phosphorylation by both PKA and a calmodulin-dependent protein kinase associated with the native protein. Phosphorylation of two further sites by PKA is induced by phosphorylation of this isoform-specific site. This phosphorylation switch can be mimicked by aspartic acid instead of phosphoserine. Cardiac MyBP-C is therefore specifically equipped with sensors for adrenergic regulation of cardiac contraction, possibly implicating cardiac MyBP-C in cardiac disease. The gene coding for cardiac MyBP-C has been assigned to the chromosomal location 11p11.2 in humans, and is therefore in a region of physical linkage to subsets of familial hypertrophic cardiomyopathy (FHC). This makes cardiac MyBP-C a candidate gene for chromosome 11-associated FHC.  相似文献   

9.
Background. The intention of this study is to analyse the correlation between a visual analogue scale (VAS) and the most common preoperative comorbidity and cardiac variables in patients undergoing elective cardiac surgery. This VAS is simple, easy to register and can be used as a global measurement of quality of life (QOL). Methods. Preoperative assessment of QOL in 1351 patients, 979 men and 372 women, with a mean age of 64.5±10.5 (18-88), undergoing elective cardiac surgery between January 2003 and December 2005. QOL was measured by the EuroQol questionnaire. Results. The mean VAS was 58.7±20.9, range 3 to 100. Univariate analysis showed a difference for sex (p=0.000), and NYHA (p=0.009) between patients with an isolated CABG and those with a combined revascularisation (p=0.05). Stepwise logistic regression analysis identified female gender (p=0.00), NYHA (p=0.00) and valve disease (p=0.03) as independent variables for a low QOL. The correlation between NYHA and QOL was low (r=-0.09, p=0.003). Conclusion. The clinical consequence is that using this simple VAS we can identify patients with a good QOL. If these patients present for high-risk surgery, with a better quality of life as primary indication, more extended counselling regarding their QOL is recommended. (Neth Heart J 2007; 15:51-4.)  相似文献   

10.
Adult cardiac myocytes do not divide anymore. Mechanically overloaded hearts undergo hypertrophy and then fail. Cardiac hypertrophy is mainly caused by myocyte hypertrophy without myocyte proliferation, except during end-stage heart failure. By contrast, non muscular myocardial cells, such as the endothelial cells of the vessels, not only hypertrophy but are also able to proliferate. Recent works have suggested that these new cells are likely to be progenitor cells originating from bone marrow or vascular endothelium. These cells may form chimeras in the donor heart following heart transplantation. It is possible to mimic such an adaptative process by injecting progenitor cells either within the myocardium, or through the coronary circulation. Two type of cells have been utilised so far, namely bone marrow cells and myoblasts (or satellite cells) from skeletal muscles. The first clinical applications after myocardial infarction have been recently reported and showed the safety of the procedure and the possibility of improving myocardial function.  相似文献   

11.
12.
Do rat cardiac myocytes release ATP on contraction?   总被引:1,自引:0,他引:1  
ATP is released by numerous cell types in response to mechanical strain. It then acts as a paracrine or autocrine signaling molecule, inducing a variety of biological responses. In this work, we addressed the question whether mechanical force acting on the membranes of contracting cardiomyocytes during periodic longitudinal shortening can stimulate the release of ATP. Electrically stimulated isolated adult rat cardiomyocytes as well as spontaneously contracting mouse cardiomyocytes derived from embryonic stem (ES) cells were assayed for ATP release with the use of luciferase and a sensitive charge-coupled device camera. Sensitivity of soluble luciferase in the supernatant of cardiomyocytes was 100 nM ATP, which is 10-fold below the EC50 values for most purinergic receptors expressed in the heart (1.5–20 µM). Light intensities were not different between resting or contracting adult rat cardiomyocytes. Similar results were obtained with ES-cell-derived contracting mouse cardiomyocytes. ATP release was measurable only from obviously damaged or permeabilized cells. To increase selectivity and sensitivity of ATP detection we have targeted a recombinant luciferase to the sarcolemmal membrane using a wheat germ agglutinin-IgG linker. Contraction of labeled adult rat cardiomyocytes was not associated with measurable bioluminescence. However, when human umbilical vein endothelial cells were targeted with membrane-bound luciferase, shear stress-induced ATP release could be clearly detected, demonstrating the sensitivity of the detection method. In the present study, we did not detect ATP release from contracting cardiomyocytes on the single cell level, despite adequate sensitivity of the detection system. Thus deformation of the contracting cardiomyocyte is not a key stimulus for the release of cellular ATP. cardiomyocytes; luciferase  相似文献   

13.
Protein kinase A (PKA)-dependent phosphorylation of troponin (Tn)I represents a major physiological mechanism during β-adrenergic stimulation in myocardium for the reduction of myofibrillar Ca2+ sensitivity via weakening of the interaction with TnC. By taking advantage of thin filament reconstitution, we directly investigated whether or not PKA-dependent phosphorylation of cardiac TnI (cTnI) decreases Ca2+ sensitivity in different types of muscle: cardiac (porcine ventricular) and fast skeletal (rabbit psoas) muscles. PKA enhanced phosphorylation of cTnI at Ser23/24 in skinned cardiac muscle and decreased Ca2+ sensitivity, of which the effects were confirmed after reconstitution with the cardiac Tn complex (cTn) or the hybrid Tn complex (designated as PCRF; fast skeletal TnT with cTnI and cTnC). Reconstitution of cardiac muscle with the fast skeletal Tn complex (sTn) not only increased Ca2+ sensitivity, but also abolished the Ca2+-desensitizing effect of PKA, supporting the view that the phosphorylation of cTnI, but not that of other myofibrillar proteins, such as myosin-binding protein C, primarily underlies the PKA-induced Ca2+ desensitization in cardiac muscle. Reconstitution of fast skeletal muscle with cTn decreased Ca2+ sensitivity, and PKA further decreased Ca2+ sensitivity, which was almost completely restored to the original level upon subsequent reconstitution with sTn. The essentially same result was obtained when fast skeletal muscle was reconstituted with PCRF. It is therefore suggested that the PKA-dependent phosphorylation or dephosphorylation of cTnI universally modulates Ca2+ sensitivity associated with cTnC in the striated muscle sarcomere, independent of the TnT isoform.  相似文献   

14.
Ma F  Li Y  Jia L  Han Y  Cheng J  Li H  Qi Y  Du J 《PloS one》2012,7(5):e35144
Interleukin-6 (IL-6) is an important cytokine participating in multiple biologic activities in immune regulation and inflammation. IL-6 has been associated with cardiovascular remodeling. However, the mechanism of IL-6 in hypertensive cardiac fibrosis is still unclear. Angiotensin II (Ang II) infusion in mice increased IL-6 expression in the heart. IL-6 knockout (IL-6-/-) reduced Ang II-induced cardiac fibrosis: 1) Masson trichrome staining showed that Ang II infusion significantly increased fibrotic areas of the wild-type mouse heart, which was greatly suppressed in IL-6-/- mice and 2) immunohistochemistry staining showed decreased expression of α-smooth muscle actin (α-SMA), transforming growth factor β1 (TGF-β1) and collagen I in IL-6-/- mouse heart. The baseline mRNA expression of IL-6 in cardiac fibroblasts was low and was absent in cardiomyocytes or macrophages; however, co-culture of cardiac fibroblasts with macrophages significantly increased IL-6 production and expression of α-SMA and collagen I in fibroblasts. Moreover, TGF-β1 expression and phosphorylation of TGF-β downstream signal Smad3 was stimulated by co-culture of macrophages with cardiac fibroblasts, while IL-6 neutralizing antibody decreased TGF-β1 expression and Smad3 phosphorylation in co-culture of macrophage and fibroblast. Taken together, our results indicate that macrophages stimulate cardiac fibroblasts to produce IL-6, which leads to TGF-β1 production and Smad3 phosphorylation in cardiac fibroblasts and thus stimulates cardiac fibrosis.  相似文献   

15.
Cardiac hypertrophy, induced by chronic pressure or volume overload, is associated with abnormalities in energy metabolism as well as characteristic increases in muscle mass and alterations in the structure of the heart. Hypertrophied hearts display increased rates of glycolysis and overall glucose utilization, but rates of pyruvate oxidation do not rise in step with rates of pyruvate generation. Glycolysis and glucose oxidation, therefore, become markedly less 'coupled' in hypertrophied hearts than in non-hypertrophied hearts. Because the pyruvate dehydrogenase complex (PDC) contributes so powerfully to the control of glucose oxidation, we set out to test the hypothesis that the function of PDC is impaired in cardiac hypertrophy. In this review we describe evidence indicating that the alterations in glucose metabolism in hypertrophied hearts cannot be explained simply by changes in PDC expression or control. Additional mechanisms that may lead to an altered balance of pyruvate metabolism in cardiac hypertrophy are discussed, with commentaries on possible changes in pyruvate transport, NADH shuttles, lactate dehydrogenase, and amino acid metabolism.  相似文献   

16.
17.
In this study we examined the effect of the statin atorvastatin on the Akt/GSK-3β pathway. Our findings indicate that atorvastatin treatment for 15 days inhibited pressure overload-induced cardiac hypertrophy and prevented nuclear translocation of GATA4 and c-Jun and AP-1 DNA-binding activity. In addition, atorvastatin treatment prevented the increase in the phosphorylation of Akt and GSK-3β caused by cardiac hypertrophy, and this effect correlated with an increase in protein levels of phosphatase and tensin homolog on chromosome 10 (PTEN), which negatively regulates the phosphoinositide-3 kinase/Akt pathway. To test whether the inhibitory effect of atorvastatin on Akt and GSK-3β phosphorylation was direct we performed in vitro studies using embryonic rat heart-derived H9c2 cells, human AC16 cardiomyoblasts and neonatal rat cardiomyocytes. Preincubation of cells with atorvastatin prevented Akt/GSK-3β phosphorylation by different hypertrophic stimuli without affecting PTEN protein levels. However, atorvastatin prevented endogenous reactive oxygen species (ROS) generation and PTEN oxidation, a process that correlates with its inactivation, suggesting that atorvastatin prevents ROS-induced PTEN inactivation in acute treatments. These findings point to a new potential anti-hypertrophic effect of statins, which can prevent activation of the Akt/GSK-3β hypertrophic pathway by modulating PTEN activation by different mechanisms in chronic and acute treatments.  相似文献   

18.
19.
Conclusion Based on our recent data (37,54,56) and the association that profound alterations in βAR signaling are found in chronic end-stage human heart failure (64), it is possible that defects in this pathway are primary elements that underlie the transition from compensated to decompensated cardiac failure. Decreasing the level of myocardial βARK1 in established heart failure, is a novel approach to improving impaired βAR receptor function and potentially alter the pathogenesis in this disease.  相似文献   

20.
Cardiac epinephrine and calcitonin gene-related peptide (CGRP) are produced by intrinsic cardiac adrenergic cells (ICA cells) residing in human and animal hearts. ICA cells are neuroparicine cells expressing δ-opioid receptors (DOR). We hypothesized that δ-opioid stimulation of ICA cells enhances epinephrine and CGRP release, which results in the augmentation of heart contraction. Rats were injected with DOR-agonist DPDPE (100 μg/kg) with or without 10-min pretreatment with either β-adrenergic receptor (β-AR) blocker propranolol (2mg/kg) or CGRP-receptor (CGRPR) blocker CGRP(8-37) (300 μg/kg), or their combination. Hemodynamics were monitored with echocardiogram and systolic blood pressure (SBP) was monitored via a tail arterial catheter. Changes in left ventricular fraction-shortening (LVFS) and heart rate (HR) were observed at 5-min after DPDPE infusion. At 5-min DPDPE induced a 36 ± 18% (p<0.001) increase of the LVFS, which continues to increase to 51 ± 24% (p<0.0001) by 10 min, and 68 ± 19% (p<0.001) by 20 min. The increase in LVFS was accompanied by the decrease of HR by 9±5% (p<0.01) by 5 min and 11 ± 6% (p<0.001) by 15 min post DPDPE infusion. This magnitude of HR reduction was observed for the remainder of the 20 min. Despite the HR-reduction, cardiac output was increased by 17 ± 8% (p<0.05) and 28±5% (p<0.001) by 5- and 20-min post DPDPE administration, respectively. There was a modest (9 ± 9%, p=0.03) decrease in SBP that was not apparent until 20 min post DPDPE infusion. The positive inotropism of DPDPE was abrogated in animals pretreated with propranolol, CGRP(8-37), or combined propranolol+CGRP(8-37). Furthermore, in whole animal and cardiomyocyte cell culture preparations, DPDPE induced myocardial protein-kinase A (PKA) activation which was abrogated in the animals pretreated with propranolol+CGRP(8-37). DOR agonists augment myocardial contraction through enhanced β-AR and CGRPR co-signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号