首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Synthesis of threonine dehydratase in Streptomyces fradiae was positively influenced by valine and negatively by isoleucine. However, these two amino acids had no effect on the activity of this enzyme. Synthesis of threonine dehydratase in -aminobutyrate resistant mutants of S. fradiae was pronouncedly less sensitive to the positive effect of valine and this change in regulation led to valine overproduction. Synthesis of acetohydroxy acid synthase is regulated in a similar manner to that of threonine dehydratase, however a lower level of expression was detected in -aminobutyrate resistant mutants. And again, no effect of branched-chain amino acids on acetohydroxy acid synthase activity was observed. It follows that in S. fradiae synthesis of threonine dehydratase is the main regulatory mechanism governing production and the mutual ratio of synthesized valine and isoleucine.Abbreviations -AB -aminobutyrate - AHAS acetohydroxy acid synthase - -KB -ketobutyrate - MNNG N-methyl-N-nitro-N-nitrosoguanidine - TD threonine dehydratase - Trans. B. transaminase of branched-chain amino acids - VDH valine dehydrogenase  相似文献   

2.
Herbicide-resistant transgenic cotton (Gossypium hirsutum L.) plants carrying mutant forms of a native acetohydroxyacid synthase (AHAS) gene have been obtained by Agrobacterium and biolistic transformation. The native gene, A19, was mutated in vitro to create amino acid substitutions at residue 563 or residue 642 of the precursor polypeptide. Transformation with the mutated forms of the A19 gene produced resistance to imidazolinone and sulfonylurea herbicides (563 substitution), or imidazolinones only (642 substitution). The herbicide-resistant phenotype of transformants was also manifested in their in vitro AHAS activity. Seedling explants of both Coker and Acala cotton varieties were transformed with the mutated forms of the A19 gene using Agrobacterium. In these experiments, hundreds of transformation events were obtained with the Coker varieties, while the Acala varieties were transformed with an efficiency about one-tenth that of Coker. Herbicide-resistant Coker and Acala plants were regenerated from a subset of transformation events. Embryonic cell suspension cultures of both Coker and Acala varieties were biolistically transformed at high frequencies using cloned cotton DNA fragments carrying the mutated forms of the A19 gene. In these transformation experiments the mutated A19 gene served as the selectable marker, and the efficiency of selection was comparable to that obtained with the NPT II gene marker of vector Bin 19. Using this method, transgenic Acala plants resistant to imidazolinone herbicides were obtained. Southern blot analyses indicated the presence of two copies of the mutated A19 transgene in one of the biolistically transformed R0 plants, and a single copy in one of the R0 plants transformed with Agrobacterium. As expected. progeny seedlings derived from outcrosses involving the R0 plant transformed with Agrobacterium segregated in a 1:1 ratio with respect to herbicide resistance. The resistant progeny grew normally after irrigation with 175 g/l of the imidazolinone herbicide imazaquin, which is five times the field application rate. In contrast, untransformed sibling plants were severely stunted.Abbreviations AHAS acetohydroxyacid synthase - CaMV cauliflower mosaic virus - ELISA enzyme linked immunosorbent assay - FW fresh weight - GUS -glucuronidase - IC50 herbicide concentration that produces a 50% reduction in the fresh weight growth of cells - NAA -naphthaleneacetic acid - NPT II neomycin phosphotransferase II - MS Murashige and Skoog (1962)  相似文献   

3.
A genomic clone encoding the potato homolog of the yeast ubiquitin-ribosomal protein fusion gene ubi3 was isolated and characterized. Chimeric genes containing the ubi3 promoter (920 bp of 5 to the ubiquitin start codon) were constructed in which the reporter gene -glucuronidase (GUS) was either fused directly to the promoter, or introduced as a translational fusion to the ubiquitin-coding region. After introduction into the potato by Agrobacterium-mediated transformation, GUS activities were measured in leaves and in tubers of transgenic clones. GUS activity was 5- to 10-fold higher in clones expressing the ubiquitin-GUS translational fusion than in clones containing GUS fused directly to the ubi3 promoter. For both types of constructs, GUS activity was highest in meristematic leaves and declined during leaf expansion, then rose again to near the meristematic levels during senescence. GUS activity in tubers was similar to that in young leaves. In contrast to the native ubi3 genes, the chimeric ubi3-GUS transgenes were not activated in the tuber by wounding.  相似文献   

4.
The natural capacity of aspen (Populus tremula L.) roots for direct shoot-bud regeneration was harnessed to establish a highly efficient transformation and regeneration procedure that does not require a pre-selection stage on antibiotics. Aspen stem segments were transformed using wildtype Agrobacterium rhizogenes (LBA9402) with the binary p35SGUSINT plasmid carrying the genes coding for -glucuronidase (GUS) and neomycin phosphotransferase II. High levels of transient GUS expression were found in the basal cut surface of 87% of the segments, and 98% of these formed well-developed adventitious roots. Proliferating root cultures were established in liquid culture, and GUS expression was found in 75% of the roots. Shoot-bud regeneration in root cultures was very high: 99% of the roots yielded shoot-buds (4.3 buds per root), of which 91% expressed GUS. Southern blot analysis and polymerase chain reaction confirmed the transgenic nature of the plants expressing GUS. Kanamycin resistance of transformants was tested with respect to callus growth and bud regeneration. Callus from transgenic plants exhibited a high growth rate in the presence of up to 100 g/l kanamycin, and bud regeneration from transformed roots occurred in the presence of up to 30 g/l kanamycin. Callus and buds from control (non-transformed) plants failed to proliferate or regenerate, respectively, in the presence of kanamycin at concentrations above 10 g/l. Ninety-four independent clones from different transformation events were established, of which 52 were phenotypically true-to-type.Abbreviations NAA -naphthaleneacetic acid - BA 6-benzylaminopurine - GUS -glucuronidase - NPTII neomycin phosphotransferase II - PCR polymerase chain reaction - EtOH ethanol - CTAB cetyltrimethylammonium bromide - SDS sodium dodecyl sulfate - NOS nopaline synthase - CaMV cauliflower mosaic virus  相似文献   

5.
Transgenic peanut plants were produced using Agrobacterium mediated gene transfer. Primary leaf explants of peanut were co-cultivated with Agrobacterium tumefaciens LBA 4404 harbouring the binary plasmid pBI 121 (conferring -glucuronidase activity and resistance to kanamycin) and cultured on regeneration medium supplemented with kanamycin to select putatively transformed shoots. They were rooted and plants were transferred to soil. Stable integration and expression of the transgenes were confirmed by NPT II assay, Southern blot hybridization and GUS assay.Abbreviations BA 6-benzyladenine - GUS -glucuronidase - IAA indole-3-acetic acid - NAA -naphthaleneacetic acid - NOS nopaline synthase - NPT II neomycin phosphotransferase II - SDS Lauryl sulfate  相似文献   

6.
Two inbred cultivars of Nicotiana tabacum (tobacco), Samsun and Xanthi, were transformed with the plasmid pBI 121 using Bin 19 in Agrobacterium tumefaciens. The plasmid carries the nptII gene conferring kanamycin resistance and the uidA gene encoding -glucuronidase (GUS). Progeny carrying the genes in the homozygous condition were identified and selfed over several generations. One line homozygous for the introduced genes and one untransformed control from each cultivar were then selected and crossed reciprocally to give four families per cultivar. Seeds from each family were grown in a replicated field trial and all plants scored for a range of morphological and agronomic characters. In addition, leaf samples were taken and GUS activity measured. In the Samsun material, which contained one copy of the introduced gene at a single locus and showed high levels of GUS expression, the transformed homozygote showed twice the level of GUS activity as the hemizygotes, wheareas in the Xanthi line, which had a lower level of GUS, the hemizygotes showed the same level of GUS activity as the transformed homozygote. The agronomic data showed differences between the families, but the source of such differences could not be ascribed unambiguously. The results are discussed in the light of related information on gene expression and field performance from other transgenic material.  相似文献   

7.
Granule-bound starch synthase is the key enzyme in amylose synthesis. The regulation of this gene was investigated using a chimaeric gene consisting of a 0.8 kb 5 upstream sequence of the granule-bound starch synthase gene from potato and the -glucuronidase gene which was introduced into potato using an Agrobacterium tumefaciens binary vector system. The chimaeric gene was highly expressed in stolons and tubers, whereas the expression in leaves, stems or roots from greenhouse-grown plants was relatively low. However, leaves from in vitro grown plantlets exhibited an elevated GUS expression. The expression of the chimaeric gene was inducible in leaves by growth on relatively high concentrations of sucrose, fructose and glucose and was about 30- to 50-fold higher than in leaves from greenhouse-grown plants. The granule-bound starch synthase gene is expressed organ-specifically since stolons and tubers showed GUS activities 125- to 3350-fold higher than in leaves. The activities in these two organs are 3- to 25-fold higher than the expression of the CaMV-GUS gene. Histochemical analysis of different tissues showed that only certain regions of leaves and roots express high GUS activities. Stolons and tubers show high expression.  相似文献   

8.
Callus-derived protoplasts of two genotypes of asparagus (Asparagus officinalis L.) were electroporated to introduce the -glucuronidase gene (GUS). The level of GUS transient gene expression and the viability of the protoplasts were influenced by the voltage and duration of the electric pulse. The transient expression level was enhanced by increasing the plasmid DNA concentration and by the presence of polyethylene glycol (PEG) in the electroporation medium. A considerable increase in GUS activity was observed in presence of both PEG and upon heat-shock treatments compared to PEG treatment alone. An optimal level of GUS activity was obtained after electroporation with a capacitive discharge of 500 V/cm and 94 ms duration in both genotypes. The two genotypes differed in their responses to in vitro culture and also showed variable levels of transient expression. The present technique was found to be suitable to obtain transgenic plants as the histochemical GUS assay revealed GUS activity in the protoplast-derived micro-colonies as well as in callus tissues.Abbreviations CaMV cauliflower mosaic virus - CAT chloramphenicol acetyltransferase - CPW salts Cocking-Power-White salts - MES 2-[N-Morpholino]ethanesulfonic acid - MU 4-methyl umbelliferone - MUG 4-methyl umbelliferyl glucuronide - F microfarad - NAA naphthaleneacetic acid - NOS nopaline synthase - NPT II neomycin phosphotransferase - X-Gluc 5-bromo-4-chloro-3-indolyl--D-glucuronide  相似文献   

9.
We have successfully transferred and expressed a reporter gene driven by an -amylase promoter in a japonica type of rice (Oryza sativa L. cv. Tainung 62) using the Agrobacterium-mediated gene transfer system. Immature rice embryos (10–12 days after anthesis) were infected with an Agrobacterium strain carrying a plasmid containing chimeric genes of -glucuronidase (uidA) and neomycin phosphotransferase (nptII). Co-incubation of potato suspension culture (PSC) with the Agrobacterium inoculum significantly improved the transformation efficiency of rice. The uidA and nptII genes, which are under the control of promoters of a rice -amylase gene (Amy8) and Agrobacterium nopaline synthase gene (nos), respectively, were both expressed in G418-resistant calli and transgenic plants. Integration of foreign genes into the genomes of transgenic plants was confirmed by Southern blot analysis. Histochemical localization of GUS activity in one transgenic plant (R0) revealed that the rice -amylase promoter functions in all cell types of the mature leaves, stems, sheaths and roots, but not in the very young leaves. This transgenic plant grew more slowly and produced less seeds than the wild-type plant, but its R1 and R2 progenies grew normally and produced as much seeds as the wild-type plant. Inheritance of foreign genes to the progenies was also confirmed by Southern blot analysis. These data demonstrate successful gene transfer and sexual inheritance of the chimeric genes.  相似文献   

10.
Leaf pieces of in vitro-cultured plantlets of the wild potato species Solanum brevidens Phil. were cocultivated with Agrobacterium tumefaciens that contained nptII and uidA genes on the disarmed plasmid pBI121. Independent transgenic shoots were regenerated from solidified and liquid medium that contained 50 mg l–1 kanamycin. Two Agrobacterium strains were investigated for transformation efficiency. GV2260, which contained p35SGUSINT, resulted in a 11% transformation frequency, compared with 1% using LBA4404. Transformation rates were 7% in liquid culture and 3% on solidified medium. All kanamycinresistant, putatively transformed plantlets were confirmed positive by histochemical GUS assays. GUS activity in 22 independently transformed plants was quantified by fluorometric assay. Southern analysis of randomly selected transgenic plants showed that each transgenic plant contained at least one copy of the uidA gene.Abbreviations GUS ß-glucuronidase - MS Murashige-Skoog medium - BA 6-benzylaminopurine - 2ip 6-(, -dimethylallylamino)purine - IAA indole-3-acetic acid - GA3 gibberellic acid - npt II neomycin phosphotransferase II - NOS nopaline synthase - MUG 4-methyl umbelliferyl glucuronide - MU 7-hydroxy-4-methylcoumarin - X-gluc 5-bromo-4-chloro-3-indolyl ß-D-glucuronic acid  相似文献   

11.
Transgenic plantlets of Chancellor grapevine (Vitis L. complex interspecific hybrid) were produced via biolistic transformation. Embryogenic cell suspensions were bombarded with 1 m tungsten particles coated with pBI426 which encodes a fusion peptide between -glucuronidase (GUS) and neomycin phosphotransferase II (NPTII). The fusion peptide is under the control of a double 35S Cauliflower Mosaic Virus promoter and a leader sequence from Alfalfa Mosaic Virus. The cells were placed on kanamycin-containing media (10, 25 or 50 mg/l) 2 d after bombardment. Activated charcoal reduced cell browning. Embryos were first observed on selective media 14–29 weeks after bombardment. More than 1600 clusters of embryos were germinated and/or assayed for GUS. Of 621 embryos assayed for GUS expression, 182 (29.3%) were positive. PCR confirmed the presence of the NPTII gene in all 5 GUS-positive and 2 GUS-negative (bombarded) embryos tested. In germination experiments, 15% of the embryo clusters produced at least one plant with normal shoot growth. Of 164 normal plants assayed for GUS expression, 37 (22.6%) were positive. The NPTII gene was amplified by PCR in 1 (of 1) GUS-positive and 4 (of 5) GUS-negative bombarded plants, but not in non-bombarded control plants. Southern blotting confirmed integration of the NPTII gene in all 3 of the GUS and PCR-NPTII positive plants tested. Biolistics is an efficient method for transformation of Chancellor and should be applicable to other important grape cultivars.Abbreviations AC activated charcoal - GUS -glucuronidase - 2,4-D 2,4-dichlorophenoxyacetic acid - BA 6-benzylaminopurine - NAA -naphthalene acetic acid - TDZ thidiazuron - NPTII neomycin phosphotransferase II - Km kanamycin - MS Murashige and Skoog (1962) medium - WPM Woody Plant Medium of Lloyd and McCown (1980)  相似文献   

12.
Culture conditions have been established for callus induction and growth from different explants in L. angustissimus L. Calli were obtained from hypocotyls, leaves, stems, cotyledons and roots cultured on media containing 2,4-dichlorophenoxyacetic acid or -naphthaleneacetic acid with kinetin, N62 or benzyladenine in different combinations and concentrations. Only those calli induced in presence of -naphthaleneacetic acid with benzyladenine or kinetin produced shoots. Calli induced from hypocotyl explants were the most efficient in regeneration of shoots. Transformation with an Agrobacterium rhizogenes binary vector carrying the plasmid pBI 121.1 is reported. The percentage of cotransformation was estimated by testing GUS activity in hairy roots. The integration of Ri T-DNA and the NPTII gene in transformed plants was confirmed by molecular analyses and in vitro culture of transgenic tissues in the presence of kanamycin.Abbreviations BA benzyladenine - 2,4-d 2,4-dichlorophenoxyacetic acid - 1AA indole-3-acetic acid - NAA -naphthaleneacetic acid - 2iP N62 - PA proanthocyanidins - NOS nopaline synthase - NI TII neomycin phosphotransferase - GUS -glucuronidase - CaMV cauliflower mosaic virus  相似文献   

13.
The acetohydroxyacid synthase (AHAS) gene family of the cotton AD allotetraploid Gossypium hirsutum has been cloned and characterized. We have identified six different AHAS genes from an analysis of genomic clones and Southern blots of genomic DNA. Four of the six genes are organized as tandem pairs, in which the genes are separated by only 2–3 kb. Conservation of restriction fragment length polymorphisms between G. hirsutum and A-genome and D-genome-containing diploid cottons was sufficient to assign the single genes in clones A5 and A19 to the A and D subgenomes, respectively. Each diploid genome has one tandem pair, but in these cases we could not make specific subgenomic assignments. DNA and deduced amino acid sequences were determined for the A5 and A19 genes, and an AHAS cDNA clone isolated from a leaflibrary. The sequence of the A19 gene matches that of the cDNA clone, while the A5 gene is 97.8% similar. The four genes comprising the tandem pairs are much less similar to the cDNA clone. The deduced amino acid sequences of the mature polypeptides encoded by the A5 and A19 genes are collinear with the housekeeping forms of AHAS from Arabidopsis thaliana, Nicotiana tabacum and Brassica napus. The constitutive expression of A5 and A19 was confirmed with RNase protection assays and northern blots. We conclude that these genes encode the main house-keeping froms of AHAS in G. hirsutum. Among the four AHAS genes comprising the two tandem pairs, at least two are functional. These genes exhibit either low-level constitutive expression (one or both of the downstream genes of each pair), or highly specific expression in reproductive tissue (one or both of the upstream genes of each pair). The AHAS gene family of G. hirsutum is more complex than that of other plants so far examined.  相似文献   

14.
The expression of a stress- and salicylic acidinducible protein gene from tobacco, PR1a protein gene, was determined after its Introduction to lettuce (Lactuca sativa L.) plants. The 5 flanking 2.4 Kb fragment from PR1a gene was joined to the bacterial -glucuronidase (GUS) gene (PR-GUS) and introduced into lettuce cotyledons by Agrobacterium-mediated gene transfer using a binary vector containing a kanamycin-resistance gene as a selectable marker. As a control with constitutive expression, the chimeric gene consisting of CaMV 35S RNA promoter and GUS gene (35S-GUS) was used. An improved method for shoot formation directly from lettuce cotyledons was used effectively for transformation, shortening the time for regeneration. In 70% or more of kanamycin-resistant regenerated lettuce plants, into which PR-GUS or 35S-GUS was introduced, high GUS activity and integration of the chimeric gene into the lettuce genome were detected. By treatment with salicylic acid, GUS activity increased 3- to 50-fold in PR-GUS transformants, however, no increase was detected in 35S-GUS plants. These results showed that the promoter of the stress-inducible tobacco PR1a protein gene was introduced into lettuce plants, and the introduced chimeric gene was expressed normally under the regulated control of the PRla promoter.Abbreviations BA N6-benzyladenine - GUS -glucuronidase - NAA -naphthaleneacetic acid - Km kanamycin - Kms kanamycin resistant - Km0 kanamycin sensitive - NPT- II neomycin phosphotransferase II - PR pathogenesis-related - SA salicylic acid - MS Murashige and Skoog medium - NOS nopaline synthase  相似文献   

15.
Stable transformation of barley tissue culture by particle bombardment   总被引:3,自引:0,他引:3  
Summary Suspension culture cells of barley (Hordeum vulgare L. cv Pokko) were stably transformed with two separate plasmids containing genes coding for neomycin phosphotransferase II and -glucuronidase, respectively. Transformed cultures were selected with the antibiotic GeneticinR. Enzymatic activity was tested in the GeneticinR resistant cultures, and in 96% of them neomycin phosphotransferase could be detected. The non-selected marker, detected as -glucuronidase activity, was expressed in 40% of the resistant cultures. Stable transformation was confirmed with Southern blot hybridization.Abbreviations GUS -glucuronidase of E. coli - uidA gene coding for - GUS G418 - GeneticinR O-2-amino-2,7-dideoxy-D-glycero--D-glucoheptopyranosyl[1-4]-O-3-deoxy-4C-methyl-3-[methylamino]--L-arabinopyranosyl-D-streptamine disulfate salt - NPTII neomycin phosphotransferase II of Tn5 - nptII gene coding for NPTII - 2,4-D 2,4-dichlorophenoxyacetic acid - X-Gluc 5-bromo-4-chloro-3-indolyl-D-glucuronic acid cyclohexylammonium salt  相似文献   

16.
A series of promoter-GUS fusion constructs containing a portion of the rice triosephosphate isomerase (tpi) promoter, the firsttpi intron, and the gene encoding bacterial -glucuronidase (GUS) were made. These constructs were electroporated into rice protoplasts and transient expression was monitored. Inclusion of the first intron from the ricetpi gene enhanced expression of the GUS gene from thetpi promoter when it was placed 5 of the GUS gene. When thetpi intron was placed in the 3-untranslated region no enhancement of GUS gene expression was observed, indicating the importance of position in intron-mediated enhancement of gene expression.  相似文献   

17.
Summary White clover (Trifolium repens L.) plants from the cultivars Grasslands Huia and Grasslands Tahora have been transformed using Agrobacterium-mediated T-DNA transfer. Transgenic plants regenerated directly from cells of the cotyledonary axil. To transform white clover, shoot tips from 3 day old seedlings were co-cultivated with A. tumefaciens strain LBA4404 carrying the plasmid vector pPE64. This vector contains the neomycin phosphotransferase II gene (nptII) and -glucuronidase reporter gene (gus) both under the control of the CaMV 35S promoter. Kanamycin-resistant plants regenerated within 42 days after transfer onto selective media. Integration of the nptII and gus genes into the white clover genome was confirmed using Southern blotting, and histochemical analysis indicated that the gus gene was expressed in a variety of tissues. In reciprocal crosses between a primary transformant and a non-transformed plant the introduced gus gene segregated as a single dominant Mendelian trait.Abbreviations BAP 6-benzylaminopurine - NAA -naphthaleneacetic acid - MS Murashige and Skoog - GUS -glucuronidase - X-GLUc 5-bromo-4-chloro-3-indolyl--D-glucuronide - MUG methylumbelliferyl--D-glucuronide - CaMV Cauliflower Mosaic Virus - NPTII neomycin phosphotransferase II - OCS octopine synthase - 4-MU 4-methyl umbelliferone  相似文献   

18.
Isoflavonoids are believed to play important roles in plant-microbe interactions. During infection of alfalfa (Medicago sativa) leaves with the fungal pathogen Phoma medicaginis, rapid increases in mRNA levels and enzyme activities of isoflavone reductase, phenylalanine ammonia-lyase, chalcone synthase and other defense genes are observed within 1 to 2 hours. The phytoalexin medicarpin and its antifungal metabolite sativan increase beginning at 4 and 8 hours, respectively, along with other isoflavonoids. In contrast, during colonization of alfalfa roots by the symbiotic mycorrhizal fungus Glomus versiforme, expression of the general phenylpropanoid and flavonoid genes phenylalanine ammonia-lyase and chalcone synthase increases while mRNA levels for the phytoalexin-specific isoflavone reductase decrease. The total isoflavonoid content of colonized roots increases with time and is higher than that of uninoculated roots, but the accumulation of the antifungal medicarpin is somehow suppressed.An isoflavone reductase genomic clone has been isolated, promoter regions have been fused to the reporter gene -glucuronidase, and the promoter-reporter fusions have been transformed into tobacco and alfalfa. Using histological staining, we have studied the developmental and stress-induced expression of this phytoalexin-specific gene in whole plants at a more detailed level than other methods allow. The isoflavone reductase promoter is functional in tobacco, a plant which does not synthesize isoflavonoids. Infection of transgenic alfalfa plants by Phoma causes an increase in -glucuronidase staining, as does elicitation of transgenic alfalfa cell cultures, indicating that this promoter fusion is a good indicator of phytoalexin biosynthesis in alfalfa.Abbreviations CA4H cinnamic acid 4-hydroxylase - CHI chalcone isomerase - CHOMT chalcone O-methyltransferase - CHS chalcone synthase - 4CL 4-coumarate:CoA ligase - COMT caffeic acid O-methyltransferase - FGM malonylated glucoside of formononetin - GUS -glucuronidase - IFOH isoflavone 2-hydroxylase - IFR isoflavone reductase - IFS isoflavone synthase - IOMT isoflavone 4-O-methyltransferase - MGM medicarpin 3-O-glucoside-6-O-malonate - PAL L-phenylalanine ammonia-lyase - PTS pterocarpan synthase - VAM vesicular arbuscular mycorrhizal - X-gluc 5-bromo-4-chloro-3-indolyl--D-glucuronide  相似文献   

19.
We have analyzed in transgenic tobacco the expression of a chimeric gene containing 5 sequences of the rice rab-16B gene fused to the -glucuronidase (GUS) reporter gene. This construct, a translational fusion (–482 to +184) including 14 amino acids of the RAB-16B protein, is expressed only in zygotic and pollen-derived embryos. In zygotic embryos, GUS activity begins to accumulate 10 days after flowering (daf), and increases until seed maturation at 25 daf. Immunological measurements of endogenous abscisic acid (ABA) accumulation in these seeds showed a close parallel between hormone levels and GUS activity. However, GUS activity could not be reproducibly induced by treatment of immature embryos with ABA (10 M). Neither GUS activity nor GUS mRNA could be detected in leaves of transgenic tobacco even after ABA treatment. In contrast, GUS activity could be induced to high levels in pollen-derived embryos by treatment with ABA. Our results show that 482 bp of 5 sequences of the rice rab-16B promoter can confer in transgenic tobacco developmentally regulated expression in embryos but not ABA-responsive expression in vegetative tissues.  相似文献   

20.
Conditions for maximising transient expression of GUS in leaf mesophyll protoplasts of Arabidopsis thaliana ecotype C24 were investigated. It was found that the factors most influencing expression levels, with optimum levels in parenthesis, were plasmid DNA quantity (100 g per 5 × 105 protoplasts), inclusion of carrier DNA (50 g), PEG pH and amount (pH above 6, and total PEG concentration at least 9% w/w) and the topological form of the DNA. Linearised plasmid DNA with long flanking sequences 3 and 5 to the marker gene yielded the highest levels of GUS expression.Abbreviations 2,4-d 2,4-dichlorophenoxyacetic acid - GUS -glucuronidase - MU methylumbelliferone - PEG polyethylene glycol - X-gluc 5-bromo-4-chloro-3-indolyl--glucuronic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号