首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Cloned DNA encoding polyketide synthase (PKS) genes from one Streptomyces species was previously shown to serve as a useful hybridisation probe for the isolation of other PKS gene clusters from the same or different species. In this work, the actI and actIII genes, encoding components of the actinorhodin PKS of Streptomyces coelicolor, were used to identify and clone a region of homologous DNA from the monensin-producing organism S. cinnamonensis. A 4799 by fragment containing the S. cinnamonensis act-homologous DNA was sequenced. Five open reading frames (ORFs 1–5) were identified on one strand of this DNA. The five ORFs show high sequence similarities to ORFs that were previously identified in the granaticin, actinorhodin, tetracenomycin and whiE PKS gene clusters. This allowed the assignment of the following putative functions to these five ORFS : a heterodimeric -ketoacyl synthase (ORF1 and ORF2), an acyl carrier protein (ORF3), a -ketoacyl reductase (ORF5), and a bifunctional cyclase/dehydrase (ORF4). The ORFs are encoded in the order ORFl-ORF2-ORF3-ORF5-ORF4, and ORFs-1 and -2 show evidence for translational coupling. This act-homologous region therefore appears to encode a PKS gene cluster. A gene disruption experiment using the vector pGM 160, and other evidence, suggests that this cluster is not essential for monensin biosynthesis but rather is involved in the biosynthesis of a cryptic aromatic polyketide in S. cinnamonensis. An efficient plasmid transformation system for S. cinnamonensis has been established, using the multicopy plasmids pWOR120 and pWOR125.  相似文献   

2.
3.
4.
5.
A mutation in actVI-ORF1, which controls C-3 reduction in actinorhodin biosynthesis by Streptomyces coelicolor, was complemented by gra-ORF5 and -ORF6 from the granaticin biosynthetic gene cluster of Streptomyces violaceoruber Tü22. It is hypothesized that, while gra-ORF5 alone is a ketoreductase for C-9, gra-ORF6 gives the enzyme regiospecificity also for C-3.  相似文献   

6.
The actI gene, encoding a component of the actinorhodin polyketide synthase of Streptomyces coelicolor, was used to identify and clone a homologous 11.7 kb BamHI DNA fragment from Saccharopolyspora hirsuta 367. The cloned fragment complemented actinorhodin production in a strain of Streptomyces coelicolor bearing a mutant actI gene. The DNA sequence of a 5.1 kb fragment revealed 6 open reading frames (ORF). ORF1 does not resemble any known DNA or deduced protein sequence, while the deduced protein sequence of ORF2 resembles that of biotin carboxyl carrier proteins. Based on the similarity to deduced protein sequences from cloned genes of polyketide producers, ORF3 would code for a ketoreductase, ORF4 and ORF5 for the putative heterodimeric -ketoacyl synthase, and ORF6 for an acyl carrier protein.  相似文献   

7.
Streptomyces arenae produces at least four different isochromanequinone antibiotics, the naphthocyclinones, of which the - and -form are active against Gram-positive bacteria. The naphthocyclinone biosynthesis gene cluster was isolated from Streptomyces arenae DSM 40737 and by sequence analysis the minimal polyketide synthase genes and several genes encoding tailoring enzymes were identified. Southern blot analysis of the naphthocyclinone gene cluster indicated that a 3.5 kb BamHI fragment located approximately 9 kb downstream of the minimal PKS genes hybridizes to the schC hydroxylase DNA probe isolated from S. halstedii. Two complete and one incomplete open reading frames were identified on this fragment. Sequence analysis revealed strong homology to the genes of the actVA region of S. coelicolor, to several (suggested) hydroxylases and a putative FMN-dependent monooxygenase. The proposed hydroxylase, encoded by ncnH, could hydroxylate aloesaponarin II, a molecule that is produced by the actinorhodin minimal polyketide synthase in combination with the actinorhodin ketoreductase, aromatase and cyclase. Furthermore, this enzyme is capable of accepting additional polyketide core structures that contain a 5-hydroxy-1,4-naphthoquinone moiety as substrates which makes it an interesting tailoring enzyme for the modification of polyketide structures.  相似文献   

8.
9.
10.
Streptomyces lividans 1326 usually does not produce the red/blue colored polyketide actinorhodin in liquid culture even though it carries the entire actinorhodin biosynthesis gene cluster. The bacterium can be forced to produce this secondary metabolite by introducing actII-ORF4, the actinorhodin pathway-specific activator gene from Streptomyces coelicolor, on a multicopy plasmid. The production of actinorhodin by such a strain has been optimized by medium and process manipulations in fed-batch cultures. With high-yield cultivation conditions, 5 g actinorhodin/l are produced during 7 days of cultivation; or approximately 0.1 g actinorhodin/g dry weight (DW)/day in the production phase. The yield in this phase is 0.15 Cmol actinorhodin/Cmol glucose, which is in the range of 25% to 40% of the maximum theoretical yield. This high-level production mineral medium is phosphate limited. In contrast, nitrogen limitation resulted in low-level production of actinorhodin and high production of α-ketoglutaric acid. Ammonium as nitrogen source was superior to nitrate supporting an almost three times higher actinorhodin yield as well as a two times higher specific production rate. The wild-type strain lacking the multicopy plasmid did not produce actinorhodin when cultivated under any of these conditions. This work examines the actinorhodin-producing potential of the strain, as well as the necessity to improve the culture conditions to fully utilize this potential. The overexpression of biosynthetic pathway-specific activator genes seems to be a rational first step in the design of secondary metabolite overproducing strains prior to alteration of primary metabolic pathways for redirection of metabolic fluxes. Journal of Industrial Microbiology & Biotechnology (2002) 28, 103–111 DOI: 10.1038/sj/jim/7000219 Received 04 April 2001/ Accepted in revised form 30 October 2001  相似文献   

11.
We have analyzed an anthracycline biosynthesis gene cluster fromStreptomyces nogalater. Based on sequence analysis, a contiguous region of 11 kb is deduced to include genes for the early steps in anthracycline biosynthesis, a regulatory gene (snoA) promoting the expression of the biosynthetic genes, and at least one gene whose product might have a role in modification of the glycoside moiety. The three ORFs encoding a minimal polyketide synthase (PKS) are separated from the regulatory gene (snoA) by a comparatively AT-rich region (GC content 60%). Subfragments of the DNA region were transferred toStreptomyces galilaeus mutants blocked in aclacinomycin biosynthesis, and to a regulatory mutant ofS. nogalater. TheS. galilaeus mutants carrying theS. nogalater minimal PKS genes produced auramycinone glycosides, demonstrating replacement of the starter unit for polyketide biosynthesis. The product ofsnoA seems to be needed for expression of at least the genes for the minimal PKS.  相似文献   

12.
A collection of actinomycin-producing Streptomycesstrains, their variants with different levels of antibiotic biosynthesis, and recombinant strains were screened in order to select new strains that produce polyketide antibiotics. Screening with the use of the cloned actgene encoding a component of actinorhodin polyketide synthase (PKS) multienzyme complex from Streptomyces coelicolorrevealed that many strains tested can synthesize polyketide antibiotics along with actinomycins. A relationship between the biosynthetic pathways of actinomycins and polyketides is discussed.  相似文献   

13.
The glucose kinase gene (glkA-ORF3) of Streptomyces coelicolor A3(2) plays an essential role in glucose utilisation and in glucose repression of a variety of genes involved in the utilisation of alternative carbon sources. These genes include dagA, which encodes an extracellular agarase that permits agar utilisation. Suppressor mutants of glkA-ORF3 deletion strains capable of utilising glucose (Glc+) arise at a frequency of about 10–5 on prolonged incubation. The Glc+ phenotype of the mutants is reversible (at a frequency of about 10–3) and reflects either the activation of a normally silent glucose kinase gene or the modification of an existing sugar kinase. Although the level of glucose kinase activity in the Glc+ supressor mutants is similar to that in the glkA + parental strain, glucose repression of dagA remains defective. Expression of the glucose kinase gene of Zymomonas mobilis in glkA-ORF3 mutants restored glucose utilisation, but not glucose repression of dagA. Over-expression of glkA-ORF3 on a high-copy-number plasmid failed to restore glucose repression of dagA in glkA-ORF3 mutants and led to loss of glucose repression of dagA in a glkA + strain. These results suggest that glucose phosphorylation itself is not sufficient for glucose repression and that glkA-ORF3 plays a specific regulatory role in triggering glucose repression in S. coelicolor A3(2).  相似文献   

14.
【目的】分析刺孢吸水链霉菌北京变种(农抗120产生菌)基因组和次级代谢产物组分,研究并鉴定农抗120产生菌中未被发现的活性组分。【方法】利用antiSMASH在线分析农抗120产生菌Streptomyces hygrospinosusvar.beijingensis基因组信息,锁定可能的制霉菌素和丰加霉素生物合成基因簇。利用HPLC和LC-MS等分析方法对农抗120产生菌发酵产物进行分析,同时利用制霉菌素和丰加霉素标准品作为对照,以鉴定该菌株代谢组分中的次级代谢产物。此外,通过构建目标基因簇大片段缺失突变株,并对所得突变株发酵产物进行检测,以确定生物合成基因簇与目的代谢产物的对应关系。【结果】本研究综合利用基因组序列分析、基因缺失突变株构建以及代谢产物检测方法,鉴定了农抗120产生菌中制霉菌素和丰加霉素两种活性成分,并确定了负责这些化合物合成的基因簇。【结论】本研究所构建的多重基因簇失活突变株为挖掘刺孢吸水链霉菌北京变种更多的天然次级代谢产物奠定了基础。  相似文献   

15.
Genetics of actinorhodin biosynthesis by Streptomyces coelicolor A3(2)   总被引:19,自引:0,他引:19  
A series of 76 mutants of Streptomyces coelicolor A3(2) specifically blocked in the synthesis of the binaphthoquinone antibiotic actinorhodin were classified into seven phenotypic classes on the basis of antibiotic activity, accumulation of pigmented precursors or shunt products of actinorhodin biosynthesis, and cosynthesis of actinorhodin in pairwise combinations of mutants. The polarity of cosynthetic reactions, and other phenotypic properties, allowed six of the mutant classes to be arranged in the most probable linear sequence of biosynthetic blocks. One member of each mutant class was mapped unambigiguously to the chromosomal linkage map in the short segment between the hisD and guaA loci, suggesting that structural genes for actinorhodin biosynthesis may form an uninterrupted cluster of chromosomal genes.  相似文献   

16.
17.
S-Adenosyl-L-methionine (SAM) is one of the major methyl donors in all living organisms. The exogenous treatment with SAM leads to increased actinorhodin production in Streptomyces coelicolor A3(2). In this study, mutants from different stages of the AfsK-AfsR signal transduction cascade were used to test the possible target of SAM. SAM had no significant effect on actinorhodin production in afsK, afsR, afsS, or actII-open reading frame 4 (ORF4) mutant. This confirms that afsK plays a critical role in delivering the signal generated by exogenous SAM. The afsK-pHJL-KN mutant did not respond to SAM, suggesting the involvement of the C-terminal of AfsK in binding with SAM. SAM increased the in vitro autophosphorylation of kinase AfsK in a dose-dependent manner, and also abolished the effect of decreased actinorhodin production by a Ser/Thr kinase inhibitor, K252a. In sum, our results suggest that SAM activates actinorhodin biosynthesis in S. coelicolor M130 by increasing the phosphorylation of protein kinase AfsK.  相似文献   

18.
Sequence analysis of the lkmB region of the daunorubicin biosynthetic gene cluster of Streptomyces griseus JA3933 revealed two contiguous open reading frames (ORF) in the same orientation, and three ORFs in the opposite orientation together extending over a 4.6 kb region adjacent to a homologue of the S. peucetius dnrJ gene. ORF1 complemented in trans the lkmB mutation, which seems to affect an early step in daunorubicin biosynthesis. Its deduced product showed no similarity to any known enzyme in the databases. The mutation in ORF1 was localised to a C-T transition at position 1172, leading to the change from a glycine to aspartic acid in the deduced protein. The lack of any homology to known polyketide synthesis enzymes indicates a regulatory role for the product of ORF1, despite the ability of lkmB mutants to further metabolise aklanonic acid. The genes of the oppositely oriented cluster seem to be involved in sugar metabolism. The putative ORF3 protein revealed strong homology to eukaryotic acyl CoA dehydrogenases and might encode an enzyme for the oxidoreduction preceding the introduction of the amino group into daunosamine, and the ORF4 protein is homologous to several epimerases, central enzymes in the formation of the l,-2,3,6-trideoxy-3-aminohexoses from TDP-d-glucose. ORF5 seems also to be related to enzymes metabolising nucleotide-activated hexoses.  相似文献   

19.
刘晶莹  白岩  潘华奇  胡江春 《微生物学报》2023,63(10):3891-3904
【目的】以基因组信息为导向,定向激活海洋来源卡伍尔氏链霉菌(Streptomyces cavourensis) NA4中沉默的Ⅱ型聚酮类次级代谢产物生物合成基因簇,鉴定新产生的次级代谢产物的结构和抑菌活性。【方法】通过添加启动子和敲除负调控基因的方法激活实验室培养条件下沉默或低表达的生物合成基因簇,并完成目标化合物的分离与纯化,通过电喷雾质谱(electrospray ionization-mass spectrometry,ESI-MS)和核磁共振(nuclear magnetic resonance,NMR)数据分析鉴定目标化合物结构,对目标化合物进行抑菌活性鉴定,基于生物信息学信息推导化合物的生物合成途径。【结果】根据基因组生物信息学分析,从海洋来源链霉菌Streptomyces cavourensis NA4中选取一个编码PKSⅡ型次级代谢产物的生物合成基因簇开展研究,成功激活目标基因簇,从中分离到1个PKSⅡ型化合物,推导了其生物合成途径并进行了抑菌活性鉴定。【结论】基因组导向下的天然产物挖掘,可以目标明确地分离产物,充分挖掘链霉菌编码次级代谢产物的潜力。  相似文献   

20.
KS-505a (longestin), produced by Streptomyces argenteolus, has a unique structure that consists of a tetraterpene (C40) skeleton, to which a 2-O-methylglucuronic acid and an o-succinyl benzoate moiety are attached. It is a novel inhibitor of calmodulin-dependent cyclic-nucleotide phosphodiesterase, which is representative of a potent anti-amnesia drug. As a first step to understanding the biosynthetic machinery of this unique and pharmaceutically useful compound, we cloned a KS505a biosynthetic gene cluster. First we searched for a gene encoding octaprenyl diphosphates, which yielded a C40 precursor by PCR, and four candidate genes were obtained. Among these, one was confirmed to have the expected enzyme activity by recombinant enzyme assay. On the basis of an analysis of the flanking regions of the gene, a putative KS-505a biosynthetic gene cluster consisting of 24 ORFs was judged perhaps to be present on a 28-kb DNA fragment. A gene disruption experiment was also employed to confirm that the cluster indeed participated in KS-505a biosynthesis. This is believed to be the first report detailing the gene cluster of a cyclized tetraterpenoid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号