首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alpha-1 antitrypsin (AAT) deficiency is a lethal hereditary disorder characterized by a severe diminution in plasma levels of AAT leading to progressive liver dysfunction. Since mesenchymal stem cells can differentiate into hepatocyte-like cells they offer a potential unlimited source in autologous transplant procedures. The transfer of genetically modified hepatocyte cells derived from hMSCs into the body constitutes a novel paradigm of coupling cell therapy with gene therapy for this disease. hMSCs were isolated by density gradient centrifugation and plastic adherence. Hepatic differentiation was induced by exposing hMSC to induction medium for up to 21 days. The mRNA levels and protein expression of several important hepatic genes were determined using RT-PCR and immunocytochemistry. The chimeric AAT-Jred transgene was transferred to differentiated cells using a lentiviral vector and its expression was visualized by fluorescent microscopy. Flow cytometric analysis confirmed that hMSCs were obtained. Major hepatocyte marker genes expression were confirmed by RT-PCR and immunocytochemistry. AAT gene was successfully introduced into hepatocyte-like cells differentiated from hMSCs. This established system could be suitable for generation of hMSC derived hepatocyte-like cells containing the normal AAT gene, thus offering a potential in vitro source of cells for transplantation therapy of liver diseases in AAT-deficient patients.  相似文献   

2.
Tissue-like structures of cells organized in vitrohave a great potential for a number of clinical and biomedical applications. Cell functions may be modulated with gene delivery, improving the characteristics of these structures. Hepatocytes that self-assemble into spheroids can be transduced through adenovirus-mediated gene transfer. An adenoviral vector (AdGFP) was employed to deliver a gene encoding for green fluorescent protein (GFP) in rat hepatocyte spheroids. GFP fluorescence was detected for at least one month. Furthermore, the rat cytochrome P450 2B1 gene (CYP2B1) was transferred through infection with a recombinant adenovirus (AdCYP2B1) in hepatocyte spheroids cultured in suspension. The CYP2B1/2 mRNA and apoprotein levels were continuously higher for over 23 days compared to phenobarbital-induced and control cultures. P450-catalyzed pentoxyresorufin-O-dealkylation activity was also high in the AdCYP2B1-infected spheroids. In these spheroid cultures, albumin and urea levels were similar to those in uninfected spheroid cultures, indicating that expression of the CYP2B1transgene did not impair these liver-specific functions. Hepatocyte spheroids transduced by recombinant adenoviral vectors can be efficiently used for drug metabolism studies, in implantation, and in bioartificial liver devices. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Hepatocytes self-assemble in culture to form compacted spherical aggregates, or spheroids, that mimic the structure of the liver by forming tight junctions and bile canalicular channels. Hepatocyte spheroids thus resemble the liver to a great extent. However, liver tissue contains other cell types and has bile ducts and sinusoids formed by endothelial cells. Reproducing 3-D co-culture in vitro could provide a means to develop a more complex tissue-like structure. Stellate cells participate in revascularization after liver injury by excreting between hepatocytes a laminin trail that endothelial cells follow to form sinusoids. In this study we investigated co-culture of rat hepatocytes and a rat hepatic stellate cell line, HSC-T6. HSC-T6, which does not grow in serum-free spheroid medium, was able to grow under co-culture conditions. Using a three-dimensional cell tracking technique, the interactions of HSC-T6 and hepatocyte spheroids were visualized. The two cell types formed heterospheroids in culture, and HSC-T6 cell invasion into hepatocyte spheroids and subsequent retraction was observed. RT-PCR revealed that albumin and cytochrome P450 2B1/2 expression were better maintained in co-culture conditions. These three-dimensional heterospheroids provide an attractive system for in vitro studies of hepatocyte-stellate cell interactions.  相似文献   

4.
Mesenchymal stem cells (MSCs) derived from bone marrow have been shown to differentiate into hepatocytes, which would be an ideal resource for transplantation or artificial liver devices. Here we investigated the efficiency of co-culture system consisting of rat MSCs and adult liver cells to induce differentiation of MSCs into hepatocyte-like cells. Marked MSCs were either co-cultured with freshly isolated liver cells or treated with hepatocyte growth factor (HGF) for 21 days. In co-culture systems, MSCs formed spheroids of round-shaped cells while keeping normal proliferation and viability, strongly expressed albumin, alpha-fetoprotein, and cytokeratin-18 in mRNA and protein level from day 3 to 21. As a control, MSCs treated with HGF showed weak gene expressions in day 14 and had a few cells of protein staining in day 21. These results indicate that the co-culture microenvironment plays a decisive role for the hepatic differentiation of MSCs, and it is more efficient than HGF treatment. Insights gained from this study will be helpful to design optimal culture systems for the hepatic differentiation of human MSCs and the hepatic function maintenance of hepatocytes in vitro.  相似文献   

5.
A scaffold-free tissue construct was formed by assembling endothelial cell-covered spheroids, and medium perfusion through the tissue construct was investigated using hydrostatic pressure-driven culture circuit. Primary rat hepatocyte spheroids covered by human umbilical vein endothelial cells (HUVECs) were assembled in culture chambers with a cylindrical culture space of 2 mm in diameter, and then medium was perfused through the assembled spheroids for 48 h. The medium flow rate through the culture chamber was measured over the perfusion culture time, which decreased during the first several hours, then increased or remained low depending on the amount of spheroids in the culture chamber. Histochemical analyses showed single tissue construct formation by spheroid fusion when cultured from 2 × 105 nuclei spheroids, with the loss of boundaries between the spheroids. Moreover, a viable cell region was found at the center of the tissue construct in several locations. Poor adhesion was found between spheroids cultured from 4 × 105 nuclei spheroids. The total nuclei density in cultured tissue constructs was estimated to be about half of that in HUVEC-covered hepatocyte spheroids.This study demonstrated the possibility of medium perfusion through scaffold-free tissue constructs by assembling endothelial cell-covered spheroids, promising for a large tissue construct culture in vitro.  相似文献   

6.
Three dimensional multicellular aggregate, also referred to as cell spheroid or microtissue, is an indispensable tool for in vitro evaluating antitumor activity and drug efficacy. Compared with classical cellular monolayer, multicellular tumor spheroid (MCTS) offers a more rational platform to predict in vivo drug efficacy and toxicity. Nevertheless, traditional processing methods such as plastic dish culture with nonadhesive surfaces are regularly time-consuming, laborious and difficult to provide uniform-sized spheroids, thus causing poor reproducibility of experimental data and impeding high-throughput drug screening. In order to provide a robust and effective platform for in vitro drug evaluation, we present an agarose scaffold prepared with the template containing uniform-sized micro-wells in commercially available cell culture plates. The agarose scaffold allows for good adjustment of MCTS size and large-scale production of MCTS. Transparent agarose scaffold also allows for monitoring of spheroid formation under an optical microscopy. The formation of MCTS from MCF-7 cells was prepared using different-size-well templates and systematically investigated in terms of spheroid growth curve, circularity, and cell viability. The doxorubicin cytotoxicity against MCF-7 spheroid and MCF-7 monolayer cells was compared. The drug penetration behavior, cell cycle distribution, cell apoptosis, and gene expression were also evaluated in MCF-7 spheroid. The findings of this study indicate that, compared with cellular monolayer, MCTS provides a valuable platform for the assessment of therapeutic candidates in an in vivo-mimic microenvironment, and thus has great potential for use in drug discovery and tumor biology research.  相似文献   

7.
8.
Engelbreth-Holm-Swarm (EHS) gel has been reported to maintain the mature hepatocyte phenotypes in primary cultured hepatocytes. We investigated the effect of EHS gel on the differentiation of fetal liver cells, which contain stem/progenitor cells. The isolated fetal liver cells cultured on EHS gel formed a spherical shape and increased liver-specific gene expressions compared with cells cultured on collagen. The hepatic progenitor cells that were transplanted subcutaneously to BALB/c nude mice could survive and express hepatocyte marker alpha-fetoprotein when the cells were suspended with EHS gel. These findings demonstrate that EHS gel supports cytodifferentiation from immature progenitor cells to hepatocytes and maintain its differentiated phenotypes in vitro and in vivo.  相似文献   

9.
Embryonic stem cells (ESC) hold great potential for the treatment of liver diseases. Here, we report the differentiation of rhesus macaque ESC along a hepatocyte lineage. The undifferentiated monkey ESC line, ORMES-6, was cultured in an optimal culture condition in an effort to differentiate them into hepatocyte-like cells in vitro. The functional efficacy of the differentiated hepatic cells was evaluated using RT-PCR for the expression of hepatocyte specific genes, and Western blot analysis and immunocytochemistry for hepatic proteins such as alpha-fetoprotein (AFP), albumin and alpha1-antitrypsin (alpha1-AT). Functional assays were performed using the periodic acid schiff (PAS) reaction and ELISA. The final yield of ESC-derived hepatocyte-like cells was measured by flow cytometry for cells that were transduced with a liver-specific lentivirus vector containing the alpha1-AT promoter driving the expression of green fluorescence protein (GFP). The treatment of monkey ESC with an optimal culture condition yielded hepatocyte-like cells that expressed albumin, alpha1-AT, AFP, hepatocyte nuclear factor 3beta, glucose-6-phophatase, and cytochrome P450 genes and proteins as determined by RT-PCR and Western blot analysis. Immunofluorescent staining showed the cells positive for albumin, AFP, and alpha1-AT. PAS staining demonstrated that the differentiated cells showed hepatocyte functional activity. Albumin could be detected in the medium after 20 days of differentiation. Flow cytometry data showed that 6.5 +/- 1.0% of the total differentiated cells were positive for GFP. These results suggest that by using a specific, empirically determined, culture condition, we were able to direct monkey ESC toward a hepatocyte lineage.  相似文献   

10.
A hemocyte primary culture system for Pomacea canaliculata in a medium mimicking hemolymphatic plasma composition was developed. Hemocytes adhered and spread onto culture dish in the first few hours after seeding but later began forming aggregates. Time-lapse video microscopy showed the dynamics of the early aggregation, with cells both entering and leaving the aggregates. During this period phagocytosis occurs and was quantified. Later (>4 h), hemocytes formed large spheroidal aggregates that increased in size and also merged with adjacent spheroids (24–96 h). Large single spheroids and spheroid aggregates detach from the bottom surface and float freely in the medium. Correlative confocal, transmission electron and phase contrast microscopy showed a peculiar organization of the spheroids, with a compact core, an intermediate zone with large extracellular lacunae and an outer zone of flattened cells; also, numerous round cells emitting cytoplasmic extensions were seen attaching to the spheroids' smooth surface. Dual DAPI/propidium iodide staining revealed the coexistence of viable and non-viable cells within aggregates, in varying proportions. DNA concentration increased during the first 24 h of culture and stabilized afterward. BrdU incorporation also indicated proliferation. Spontaneous spheroid formation in culture bears interesting parallels with spheroidal hemocyte aggregates found in vivo in P. canaliculata, and also with spheroids formed by tumoral or non-tumoral mammalian cells in vitro.  相似文献   

11.
Cancer cell spheroids have been shown to be more physiologically relevant to native tumor tissue than monolayer 2D culture cells. Due to enhanced intercellular communications among cells in spheroids, spheroid secreted exosomes which account for transcellular transportation should exceed those from 2D cell culture and may display a different expression pattern of miRNA or protein. To test this, we employed a widely used pancreatic cancer cell line, PANC-1, to create 3D spheroids and compared exosomes generated by both 2D cell culture and 3D PANC-1 spheroids. We further measured and compared exosomal miRNA and GPC-1 protein expression with qRT-PCR and enzyme-linked immunosorbent assay, respectively. It showed that PANC-1 cells cultured in 3D spheroids can produce significantly more exosomes than PANC-1 2D cells and exosomal miRNA and GPC-1 expression derived from spheroids show more features relevant to the progression of pancreatic cancer. These findings point to the potential importance of using spheroids as in vitro model to study cancer development and progression.  相似文献   

12.
PurposeTo develop an on-lattice agent-based model describing the growth of multicellular tumor spheroids using simple Monte Carlo tools.MethodsCells are situated on the vertices of a cubic grid. Different cell states (proliferative, hypoxic or dead) and cell evolution rules, driven by 10 parameters, and the effects of the culture medium are included. About twenty spheroids of MCF-7 human breast cancer were cultivated and the experimental data were used for tuning the model parameters.ResultsSimulated spheroids showed adequate sizes of the necrotic nuclei and of the hypoxic and proliferative cell phases as a function of the growth time, mimicking the overall characteristics of the experimental spheroids. The relation between the radii of the necrotic nucleus and the whole spheroid obtained in the simulations was similar to the experimental one and the number of cells, as a function of the spheroid volume, was well reproduced. The statistical variability of the Monte Carlo model described the whole volume range observed for the experimental spheroids. Assuming that the model parameters vary within Gaussian distributions it was obtained a sample of spheroids that reproduced much better the experimental findings.ConclusionsThe model developed allows describing the growth of in vitro multicellular spheroids and the experimental variability can be well reproduced. Its flexibility permits to vary both the agents involved and the rules that govern the spheroid growth. More general situations, such as, e. g., tumor vascularization, radiotherapy effects on solid tumors, or the validity of the tumor growth mathematical models can be studied.  相似文献   

13.
Hepatocyte-like cells induced from bone marrow mesenchymal stem cells (BMSCs) recover liver function in animal models with liver failure. Our initial findings revealed that human BMSCs improved liver function in hepatitis B patients with end stage liver disease. However, the susceptibility of BMSCs to HBV infection during induction toward hepatocytes remains unknown. We have assessed whether BMSCs-derived hepatocyte-like cells can function like liver cells and be infected by HBV. A new and efficient way to direct the differentiation of BMSCs into functional hepatocytes was developed. BMSCs obtained from hepatitis B patients were induced to differentiate into hepatocytes through exposure to HGF, FGF-4, and EGF. After 6 days of exposure, BMSCs-derived hepatocyte-like cells that expressed a subset of hepatic genes and showed hepatic functions were obtained. HBV was used to infect the differentiated cells, and subsequently these cells were assayed for the presence of HBeAg, HBsAg, and HBV DNA. BMSCs proved resistant to HBV infection, both in vitro and during differentiation into hepatocytes in vitro. This demonstrates that BMSCs are resistant to HBV infection. BMSCs are viable for transplantation and should facilitate further research exploring the in vivo HBV-resistance of the hepatocytes derived from BMSCs after transplantation, a characteristic that could form the basis for hepatocyte transplantation.  相似文献   

14.
Background aimsPreviously, we have shown that human decidua-derived mesenchymal stromal cells (DMSC) are mesenchymal stromal cells (MSC) with a clonal differentiation capacity for the three embryonic layers. The endodermal capacity of DMSC was revealed by differentiation into pulmonary cells. In this study, we examined the hepatic differentiation of DMSC.MethodsDMSC were cultured in hepatic differentiation media or co-cultured with murine liver homogenate and analyzed with phenotypic, molecular and functional tests.Results and ConclusionsDMSC in hepatic differentiation media changed their fibroblast morphology to a hepatocyte-like morphology and later formed a 3-dimensional (3-D) structure or hepatosphere. Moreover, the hepatocyte-like cells and the hepatospheres expressed liver-specific markers such as synthesis of albumin (ALB), hepatocyte growth factor receptor (HGFR), α-fetoprotein (AFP) and cytokeratin-18 (CK-18), and exhibited hepatic functions including glycogen storage capacity and indocyanine green (ICG) uptake/secretion. Human DMSC co-cultured with murine liver tissue homogenate in a non-contact in vitro system showed hepatic differentiation, as evidenced by expression of AFP and ALB genes. The switch in the expression of these two genes resembled liver development. Indeed, the decrease in AFP and increase in ALB expression throughout the co-culture were consistent with the expression pattern observed during normal liver organogenesis in the embryo. Interestingly, AFP and ALB expression was significantly higher when DMSC were co-cultured with injured liver tissue, indicating that DMSC respond differently under normal and pathologic micro-environmental conditions. In conclusion, DMSC-derived hepatospheres and DMSC co-cultured with liver homogenate could be suitable in vitro models for toxicologic, developmental and pre-clinical hepatic regeneration studies.  相似文献   

15.
Cancer cell spheroids present a relevant in vitro model of avascular tumors for anti-cancer drug testing applications. A detailed protocol for producing both mono-culture and co-culture spheroids in a high throughput 96-well plate format is described in this work. This approach utilizes an aqueous two-phase system to confine cells into a drop of the denser aqueous phase immersed within the second aqueous phase. The drop rests on the well surface and keeps cells in close proximity to form a single spheroid. This technology has been adapted to a robotic liquid handler to produce size-controlled spheroids and expedite the process of spheroid production for compound screening applications. Spheroids treated with a clinically-used drug show reduced cell viability with increase in the drug dose. The use of a standard micro-well plate for spheroid generation makes it straightforward to analyze viability of cancer cells of drug-treated spheroids with a micro-plate reader. This technology is straightforward to implement both robotically and with other liquid handling tools such as manual pipettes.  相似文献   

16.
Three-dimensional (3D) tumor spheroids are utilized in cancer research as a more accurate model of the in vivo tumor microenvironment, compared to traditional two-dimensional (2D) cell culture. The spheroid model is able to mimic the effects of cell-cell interaction, hypoxia and nutrient deprivation, and drug penetration. One characteristic of this model is the development of a necrotic core, surrounded by a ring of G1 arrested cells, with proliferating cells on the outer layers of the spheroid. Of interest in the cancer field is how different regions of the spheroid respond to drug therapies as well as genetic or environmental manipulation. We describe here the use of the fluorescence ubiquitination cell cycle indicator (FUCCI) system along with cytometry and image analysis using commercial software to characterize the cell cycle status of cells with respect to their position inside melanoma spheroids. These methods may be used to track changes in cell cycle status, gene/protein expression or cell viability in different sub-regions of tumor spheroids over time and under different conditions.  相似文献   

17.
Bone marrow (BM) cells originally include alpha-fetoprotein (AFP)- and c-Met [a receptor for hepatocyte growth factor (HGF)]-expressing cells. In vitro treatment of BM cells with HGF induced albumin-expressing hepatocyte-like cells. Furthermore, those hepatocyte-like cells expressed cytokeratins 8 and 18, which are typically expressed in normal adult hepatocytes. These findings demonstrate that BM cells include AFP-expressing hepatic progenitor cells that can be differentiated into hepatocytes by HGF in culture, indicating that such cultures are useful resources for cell transplantation therapy for liver diseases.  相似文献   

18.
19.
20.
The handling of hepatocytes, a major cell population in the liver, is an important technique in both liver tissue engineering and hepatology. However, these cells are so fragile that it has been impossible to harvest hepatocytes with high viability from tissue culture dishes after a period of culture in vitro. In this study, we employed an artificial substrate for transfection of multilayer hepatocytes and harvested these cells with high viability after transfection. Hepatocytes cultured on an amphiphilic artificial substrate form multilayer aggregates (spheroids) in the presence of growth factors during gene transfection with cation liposomes. Compared to cells cultured on a collagen-coated plate, these spheroids are easily harvested with high viability by pipetting in EDTA solution. In addition, these spheroids rapidly spread on collagen after transfer from the artificial substrate, demonstrating that hepatocytes in the center of the spheroids were viable. Epidermal growth factor (EGF) increased the transfection efficiency into hepatocytes while hepatocyte growth factor (HGF) alone did not increase the efficiency. However, HGF synergestically increased the effect of EGF on transfection. Interestingly, this transfection required the process of spheroid formation because the gene was not transfected once the spheroid formation completed or under conditions where hepatocytes did not form spheroids. This method using spheroidal hepatocytes for in vitro transfection is promising for the development of ex vivo gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号