首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMO-targeted ubiquitin ligases (STUbLs) recognize sumoylated proteins as substrates for ubiquitylation and have been implicated in several aspects of DNA repair and the damage response. However, few physiological STUbL substrates have been identified, and the relative importance of SUMO binding versus direct interactions with the substrate remains a matter of debate. We now present evidence that the ubiquitin ligase Rad18 from Saccharomyces cerevisiae, which monoubiquitylates the sliding clamp protein proliferating cell nuclear antigen (PCNA) in response to DNA damage, exhibits the hallmarks of a STUbL. Although not completely dependent on sumoylation, Rad18’s activity towards PCNA is strongly enhanced by the presence of SUMO on the clamp. The stimulation is brought about by a SUMO-interacting motif in Rad18, which also mediates sumoylation of Rad18 itself. Our results imply that sumoylated PCNA is the physiological ubiquitylation target of budding yeast Rad18 and suggest a new mechanism by which the transition from S phase-associated sumoylation to damage-induced ubiquitylation of PCNA is accomplished.  相似文献   

2.
PCNA is a key component of DNA replication and repair machineries. DNA damage-induced PCNA ubiquitylation serves as a molecular mark to orchestrate postreplication repair. Here, we have identified and characterized Spartan, a protein that specifically recognizes ubiquitylated PCNA and plays an important role in cellular resistance to UV radiation. In vitro, Spartan engages ubiquitylated PCNA via both a PIP box and a UBZ domain. In cells, Spartan is recruited to sites of UV damage in a manner dependent upon the PIP box, the UBZ domain, and PCNA ubiquitylation. Furthermore, Spartan colocalizes and interacts with Rad18, the E3 ubiquitin ligase that modifies PCNA. Surprisingly, while Spartan is recruited by ubiquitylated PCNA, knockdown of Spartan compromised chromatin association of Rad18, monoubiquitylation of PCNA, and localization of Pol η to UV damage. Thus, as a "reader" of ubiquitylated PCNA, Spartan promotes an unexpected feed-forward loop to enhance PCNA ubiquitylation and translesion DNA synthesis.  相似文献   

3.
Many proteins involved in DNA replication and repair undergo post-translational modifications such as phosphorylation and ubiquitylation. Proliferating cell nuclear antigen (PCNA; a homotrimeric protein that encircles double-stranded DNA to function as a sliding clamp for DNA polymerases) is monoubiquitylated by the RAD6-RAD18 complex and further polyubiquitylated by the RAD5-MMS2-UBC13 complex in response to various DNA-damaging agents. PCNA mono- and polyubiquitylation activate an error-prone translesion synthesis pathway and an error-free pathway of damage avoidance, respectively. Here we show that replication factor C (RFC; a heteropentameric protein complex that loads PCNA onto DNA) was also ubiquitylated in a RAD18-dependent manner in cells treated with alkylating agents or H(2)O(2). A mutant form of RFC2 with a D228A substitution (corresponding to a yeast Rfc4 mutation that reduces an interaction with replication protein A (RPA), a single-stranded DNA-binding protein) was heavily ubiquitylated in cells even in the absence of DNA damage. Furthermore RFC2 was ubiquitylated by the RAD6-RAD18 complex in vitro, and its modification was inhibited in the presence of RPA. The inhibitory effect of RPA on RFC2 ubiquitylation was relatively specific because RAD6-RAD18-mediated ubiquitylation of PCNA was RPA-insensitive. Our findings suggest that RPA plays a regulatory role in DNA damage responses via repression of RFC2 ubiquitylation in human cells.  相似文献   

4.
Fanconi anemia (FA) is a cancer susceptibility syndrome characterized by sensitivity to DNA-damaging agents. The FA proteins (FANCs) are implicated in DNA repair, although the precise mechanisms by which FANCs process DNA lesions are not fully understood. An epistatic relationship between the FA pathway and translesion synthesis (TLS, a post-replication DNA repair mechanism) has been suggested, but the basis for cross-talk between the FA and TLS pathways is poorly understood. We show here that ectopic overexpression of the E3 ubiquitin ligase Rad18 (a central regulator of TLS) induces DNA damage-independent mono-ubiquitination of proliferating cell nuclear antigen (PCNA) (a known Rad18 substrate) and FANCD2. Conversely, DNA damage-induced mono-ubiquitination of both PCNA and FANCD2 is attenuated in Rad18-deficient cells, demonstrating that Rad18 contributes to activation of the FA pathway. WT Rad18 but not an E3 ubiquitin ligase-deficient Rad18 C28F mutant fully complements both PCNA ubiquitination and FANCD2 activation in Rad18-depleted cells. Rad18-induced mono-ubiquitination of FANCD2 is not observed in FA core complex-deficient cells, demonstrating that Rad18 E3 ligase activity alone is insufficient for FANCD2 ubiquitylation. Instead, Rad18 promotes FA core complex-dependent FANCD2 ubiquitination in a manner that is secondary to PCNA mono-ubiquitination. Taken together, these results demonstrate a novel Rad18-dependent mechanism that couples activation of the FA pathway with TLS.  相似文献   

5.
During replication, bypass of DNA lesions is orchestrated by the Rad6 pathway. Monoubiquitination of proliferating cell nuclear antigen (PCNA) by Rad6/Rad18 leads to recruitment of translesion polymerases for direct and potentially mutagenic damage bypass. An error-free bypass pathway may be initiated via K63-linked PCNA polyubiquitination by Ubc13/Mms2 and the E3 ligase Rad5 in yeast, or HLTF/SHPRH in vertebrates. For the latter two enzymes, redundancy with a third E3 ligase and alternative functions have been reported. We have previously shown that the Rad6 pathway is involved in somatic hypermutation of immunoglobulin genes in B lymphocytes. Here, we have used knockout strategies targeting expression of the entire SHPRH protein or functionally significant domains in chicken DT40 cells that do not harbor a HLTF ortholog. We show that SHPRH is apparently redundant with another E3 ligase during DNA damage-induced PCNA modification. SHPRH plays no substantial role in cellular resistance to drugs initiating excision repair and the Rad6 pathway, but is important in survival of topoisomerase II inhibitor treatment. Removal of only the C-terminal RING domain does not interfere with this SHPRH function. SHPRH inactivation does not substantially impact on the overall efficacy of Ig diversification. Redundancy of E3 ligases in the Rad6 pathway may be linked to its different functions in genome maintenance and genetic plasticity.  相似文献   

6.
Many types of DNA lesions in template strands block DNA replication and lead to a stalling of replication forks. This block can be overcome (bypassed) by special DNA polymerases (for example, DNA polymerase eta, Pol eta) that perform translesion synthesis on damaged template DNA. The phenomenon of completing DNA replication, while DNA lesions remain in the template strands, has been named post-replication repair (PRR). In yeast Saccharomyces cerevisiae, PRR includes mutagenic and error-free pathways under the regulation of the RAD6/RAD18 complex, which induces ubiquitylation of PCNA. In mammalian cells, Pol eta accumulates in replication foci but the mechanism of this accumulation is not known. Pol eta possesses a conserved PCNA binding motif at the C terminal and phosphorylation of this motif might be essential for its interaction with PCNA. We have shown previously that staurosporine, an inhibitor of protein kinases, inhibits PRR in human cells. In this study we examined whether the accumulation of Pol eta in replication foci after DNA damage is dependent on phosphorylation of the PCNA binding motif. We also studied DNA damage-induced phosphorylation of GFP-tagged human Rad18 (hRad18) and its accumulation in replication foci. Our data indicate that (1) Pol eta is not phosphorylated in response to UV irradiation or MMS treatment, but its diffusional mobility is slightly decreased, and (2) hRad18 accumulates in MMS-treated cells, and considerable amount of the protein co-localizes with detergent insoluble PCNA in replication foci; these responses are sensitive to staurosporine. Our data suggest that hRad18 phosphorylation is the staurosporine-sensitive PRR step.  相似文献   

7.
DNA double-strand breaks (DSBs) can be generated not only by reactive agents but also as a result of replication fork collapse at unrepaired DNA lesions. Whereas ubiquitylation of proliferating cell nuclear antigen (PCNA) facilitates damage bypass, modification of yeast PCNA by small ubiquitin-like modifier (SUMO) controls recombination by providing access for the Srs2 helicase to disrupt Rad51 nucleoprotein filaments. However, in human cells, the roles of PCNA SUMOylation have not been explored. Here, we characterize the modification of human PCNA by SUMO in vivo as well as in vitro. We establish that human PCNA can be SUMOylated at multiple sites including its highly conserved K164 residue and that SUMO modification is facilitated by replication factor C (RFC). We also show that expression of SUMOylation site PCNA mutants leads to increased DSB formation in the Rad18(-/-) cell line where the effect of Rad18-dependent K164 PCNA ubiquitylation can be ruled out. Moreover, expression of PCNA-SUMO1 fusion prevents DSB formation as well as inhibits recombination if replication stalls at DNA lesions. These findings suggest the importance of SUMO modification of human PCNA in preventing replication fork collapse to DSB and providing genome stability.  相似文献   

8.
DNA polymerase zeta (Polzeta) participates in translesion DNA synthesis and is involved in the generation of the majority of mutations induced by DNA damage. The mechanisms that license access of Polzeta to the primer terminus and regulate the extent of its participation in genome replication are poorly understood. The Polzeta-dependent damage-induced mutagenesis requires monoubiquitination of proliferating cell nuclear antigen (PCNA) that is triggered by exposure to mutagens. We show that Polzeta contributes to DNA replication and causes mutagenesis not only in response to DNA damage but also in response to malfunction of normal replicative machinery due to mutations in replication genes. These replication defects lead to ubiquitination of PCNA even in the absence of DNA damage. Unlike damage-induced mutagenesis, the Polzeta-dependent spontaneous mutagenesis in replication mutants is reduced in strains defective in both ubiquitination and sumoylation of Lys164 of PCNA. Additionally, studies of a PCNA mutant defective for functional interactions with Polzeta, but not for monoubiquitination by the Rad6/Rad18 complex demonstrate a role for PCNA in regulating the mutagenic activity of Polzeta separate from its modification at Lys164.  相似文献   

9.
Monoubiquitylation of the homotrimeric DNA sliding clamp PCNA at lysine residue 164 (PCNA(K164)) is a highly conserved, DNA damage-inducible process that is mediated by the E2/E3 complex Rad6/Rad18. This ubiquitylation event recruits translesion synthesis (TLS) polymerases capable of replicating across damaged DNA templates. Besides PCNA, the Rad6/Rad18 complex was recently shown in yeast to ubiquitylate also 9-1-1, a heterotrimeric DNA sliding clamp composed of Rad9, Rad1, and Hus1 in a DNA damage-inducible manner. Based on the highly similar crystal structures of PCNA and 9-1-1, K185 of Rad1 (Rad1(K185)) was identified as the only topological equivalent of PCNA(K164). To investigate a potential role of posttranslational modifications of Rad1(K185) in DNA damage management, we here generated a mouse model with a conditional deletable Rad1(K185R) allele. The Rad1(K185) residue was found to be dispensable for Chk1 activation, DNA damage survival, and class switch recombination of immunoglobulin genes as well as recruitment of TLS polymerases during somatic hypermutation of immunoglobulin genes. Our data indicate that Rad1(K185) is not a functional counterpart of PCNA(K164).  相似文献   

10.
The replication clamp PCNA is loaded around DNA by replication factor C (RFC) and functions in DNA replication and repair. Regulated unloading of PCNA during the progression and termination of DNA replication may require additional factors. Here we show that a Saccharomyces cerevisiae complex required for the establishment of sister chromatid cohesion functions as an efficient unloader of PCNA. Unloading requires ATP hydrolysis. This seven-subunit Ctf18-RFC complex consists of the four small subunits of RFC, together with Ctf18, Dcc1, and Ctf8. Ctf18-RFC was also a weak loader of PCNA onto naked template-primer DNA. However, when the single-stranded DNA template was coated by the yeast single-stranded DNA binding protein replication protein A (RPA) but not by a mutant form of RPA or a heterologous single-stranded DNA binding protein, both binding of Ctf18-RFC to substrate DNA and loading of PCNA were strongly inhibited, and unloading predominated. Neither yeast RFC itself nor two other related clamp loaders, containing either Rad24 or Elg1, catalyzed significant unloading of PCNA. The Dcc1 and Ctf8 subunits of Ctf18-RFC, while required for establishing sister chromatid cohesion in vivo, did not function specifically in PCNA unloading in vitro, thereby separating the functionality of the Ctf18-RFC complex into two distinct paths.  相似文献   

11.
Rad18 is a ubiquitin E3 ligase that monoubiquitinates PCNA on stalled replications forks. This allows recruitment of damage-tolerant polymerases for damage bypass and DNA repair. In this activity, the Rad18 protein has to interact with Rad6, the E2 ubiquitin-conjugating enzyme, ubiquitin, PCNA and DNA. Here we analyze the biochemical interactions of specific domains of the Rad18 protein. We found that the Rad6/Rad18 complex forms stable dimers in vitro. Consistent with previous findings, both the Ring domain and a C-terminal region contribute to the Rad6 interaction, while the C-terminus is not required for the interaction with PCNA. Surprisingly we find that the C2HC zinc finger is important for interaction with ubiquitin, apparently analogous to the interactions of classical zinc fingers with ubiquitin such as found in the UBZ and UBM domains in Y-family polymerases. Finally we find that the SAP domain, but not the zinc finger domain, is capable of DNA binding in vitro.  相似文献   

12.
Camptothecin (CPT) and related chemotherapeutic drugs induce formation of DNA Topoisomerase I (Top1) covalent or cleavage complexes (Top1ccs) that block leading-strand DNA synthesis and elicit DNA Double Stranded Breaks (DSB) during S phase. The Fanconi Anemia (FA) pathway is implicated in tolerance of CPT-induced DNA damage yet the mechanism of FA pathway activation by Top1 poisons has not been studied. We show here that the FA core complex protein FANCA and monoubiquitinated FANCD2 (an effector of the FA pathway) are rapidly mobilized to chromatin in response to CPT treatment in several human cancer cell lines and untransformed primary human dermal fibroblasts. FANCD2 depletion using siRNA leads to impaired recovery from CPT-induced inhibition or DNA synthesis, persistence of γH2AX (a DSB marker) and reduced cell survival following CPT treatment. The E3 ubiquitin ligase Rad18 is necessary for CPT-induced recruitment of FANCA and FANCD2 to chromatin. Moreover, Rad18-depletion recapitulates the DNA synthesis and survival defects of FANCD2-deficiency in CPT-treated cells. It is well-established that Rad18 promotes FA pathway activation and DNA damage tolerance in response to bulky DNA lesions via a mechanism involving PCNA monoubiquitination. In contrast, PCNA monoubiquitination is not involved in Rad18-mediated FA pathway activation or cell survival following acquisition of CPT-induced DSB. Moreover, while Rad18 is implicated in recombinational repair of DSB via an E3 ligase-independent mechanism, we demonstrate that Rad18 E3 ligase activity is essential for appropriate FA pathway activation and DNA damage tolerance after CPT treatment. Taken together, our results define a novel pathway of Rad18-dependent DSB repair that is dissociable from known Rad18-mediated DNA repair mechanisms based on its independence from PCNA ubiquitination and requirement for E3 ligase activity.  相似文献   

13.
Double strand breaks (DSBs) are the most serious type of DNA damage. DSBs can be generated directly by exposure to ionizing radiation or indirectly by replication fork collapse. The DNA damage tolerance pathway, which is conserved from bacteria to humans, prevents this collapse by overcoming replication blockages. The INO80 chromatin remodeling complex plays an important role in the DNA damage response. The yeast INO80 complex participates in the DNA damage tolerance pathway. The mechanisms regulating yINO80 complex are not fully understood, but yeast INO80 complex are necessary for efficient proliferating cell nuclear antigen (PCNA) ubiquitination and for recruitment of Rad18 to replication forks. In contrast, the function of the mammalian INO80 complex in DNA damage tolerance is less clear. Here, we show that human INO80 was necessary for PCNA ubiquitination and recruitment of Rad18 to DNA damage sites. Moreover, the C-terminal region of human INO80 was phosphorylated, and overexpression of a phosphorylation-deficient mutant of human INO80 resulted in decreased ubiquitination of PCNA during DNA replication. These results suggest that the human INO80 complex, like the yeast complex, was involved in the DNA damage tolerance pathway and that phosphorylation of human INO80 was involved in the DNA damage tolerance pathway. These findings provide new insights into the DNA damage tolerance pathway in mammalian cells.  相似文献   

14.
Camptothecin (CPT) and related chemotherapeutic drugs induce formation of DNA topoisomerase I (Top1) covalent or cleavage complexes (Top1ccs) that block leading-strand DNA synthesis and elicit DNA Double Stranded Breaks (DSB) during S phase. The Fanconi Anemia (FA) pathway is implicated in tolerance of CPT-induced DNA damage yet the mechanism of FA pathway activation by Top1 poisons has not been studied. We show here that the FA core complex protein FANCA and monoubiquitinated FANCD2 (an effector of the FA pathway) are rapidly mobilized to chromatin in response to CPT treatment in several human cancer cell lines and untransformed primary human dermal fibroblasts. FANCD2 depletion using siRNA leads to impaired recovery from CPT-induced inhibition or DNA synthesis, persistence of γH2AX (a DSB marker) and reduced cell survival following CPT treatment. The E3 ubiquitin ligase Rad18 is necessary for CPT-induced recruitment of FANCA and FANCD2 to chromatin. Moreover, Rad18-depletion recapitulates the DNA synthesis and survival defects of FANCD2-deficiency in CPT-treated cells. It is well-established that Rad18 promotes FA pathway activation and DNA damage tolerance in response to bulky DNA lesions via a mechanism involving PCNA monoubiquitination. In contrast, PCNA monoubiquitination is not involved in Rad18-mediated FA pathway activation or cell survival following acquisition of CPT-induced DSB. Moreover, while Rad18 is implicated in recombinational repair of DSB via an E3 ligase-independent mechanism, we demonstrate that Rad18 E3 ligase activity is essential for appropriate FA pathway activation and DNA damage tolerance after CPT treatment. Taken together, our results define a novel pathway of Rad18-dependent DSB repair that is dissociable from known Rad18-mediated DNA repair mechanisms based on its independence from PCNA ubiquitination and requirement for E3 ligase activity.Key words: camptothecin, Rad18, topoisomerase I, double strand breaks, Fanconi anemia  相似文献   

15.
Regulation of PCNA ubiquitylation plays a key role in the tolerance to DNA damage in eukaryotes. Although the evolutionary conserved mechanism of PCNA ubiquitylation is well understood, the deubiquitylation of ubPCNA remains poorly characterized. Here, we show that the histone H2B(K123) ubiquitin protease Ubp10 also deubiquitylates ubPCNA in Saccharomyces cerevisiae. Our results sustain that Ubp10-dependent deubiquitylation of the sliding clamp PCNA normally takes place during S phase, likely in response to the simple presence of ubPCNA. In agreement with this, we show that Ubp10 forms a complex with PCNA in vivo. Interestingly, we also show that deletion of UBP10 alters in different ways the interaction of PCNA with DNA polymerase ζ-associated protein Rev1 and with accessory subunit Rev7. While deletion of UBP10 enhances PCNA-Rev1 interaction, it decreases significantly Rev7 binding to the sliding clamp. Finally, we report that Ubp10 counteracts Rad18 E3-ubiquitin ligase activity on PCNA at lysine 164 in such a manner that deregulation of Ubp10 expression causes tolerance impairment and MMS hypersensitivity.  相似文献   

16.
We have investigated mechanisms that recruit the translesion synthesis (TLS) DNA polymerase Polkappa to stalled replication forks. The DNA polymerase processivity factor PCNA is monoubiquitinated and interacts with Polkappa in cells treated with the bulky adduct-forming genotoxin benzo[a]pyrene dihydrodiol epoxide (BPDE). A monoubiquitination-defective mutant form of PCNA fails to interact with Polkappa. Small interfering RNA-mediated downregulation of the E3 ligase Rad18 inhibits BPDE-induced PCNA ubiquitination and association between PCNA and Polkappa. Conversely, overexpressed Rad18 induces PCNA ubiquitination and association between PCNA and Polkappa in a DNA damage-independent manner. Therefore, association of Polkappa with PCNA is regulated by Rad18-mediated PCNA ubiquitination. Cells from Rad18(-/-) transgenic mice show defective recovery from BPDE-induced S-phase checkpoints. In Rad18(-/-) cells, BPDE induces elevated and persistent activation of checkpoint kinases, indicating persistently stalled forks due to defective TLS. Rad18-deficient cells show reduced viability after BPDE challenge compared with wild-type cells (but survival after hydroxyurea or ionizing radiation treatment is unaffected by Rad18 deficiency). Inhibition of RPA/ATR/Chk1-mediated S-phase checkpoint signaling partially inhibited BPDE-induced PCNA ubiquitination and prevented interactions between PCNA and Polkappa. Taken together, our results indicate that ATR/Chk1 signaling is required for Rad18-mediated PCNA monoubiquitination. Recruitment of Polkappa to ubiquitinated PCNA enables lesion bypass and eliminates stalled forks, thereby attenuating the S-phase checkpoint.  相似文献   

17.
Post-translational modifications of Proliferating Cell Nuclear Antigen (PCNA) play a key role in regulating the bypass of DNA lesions during DNA replication. PCNA can be monoubiquitylated at lysine 164 by the RAD6-RAD18 ubiquitin ligase complex. Through this modification, PCNA can interact with low fidelity Y family DNA polymerases to promote translesion synthesis. Monoubiquitylated PCNA can be polyubiquitylated on lysine 63 of ubiquitin by a further ubiquitin-conjugating complex. This modification promotes a template switching bypass process in yeast, while its role in higher eukaryotes is less clear.We investigated the function of PCNA ubiquitylation using a PCNAK164R mutant DT40 chicken B lymphoblastoma cell line, which is hypersensitive to DNA damaging agents such as methyl methanesulfonate (MMS), cisplatin or ultraviolet radiation (UV) due to the loss of PCNA modifications. In the PCNAK164R mutant we also detected cell cycle arrest following UV treatment, a reduced rate of damage bypass through translesion DNA synthesis on synthetic UV photoproducts, and an increased rate of genomic mutagenesis following MMS treatment. PCNA-ubiquitin fusion proteins have been reported to mimic endogenous PCNA ubiquitylation. We found that the stable expression of a PCNAK164R-ubiquitin fusion protein fully or partially rescued the observed defects of the PCNAK164R mutant. The expression of a PCNAK164R-ubiquitinK63R fusion protein, on which the formation of lysine 63-linked polyubiquitin chains is not possible, similarly rescued the cell cycle arrest, DNA damage sensitivity, reduction of translesion synthesis and increase of MMS-induced genomic mutagenesis. Template switching bypass was not affected by the genetic elimination of PCNA polyubiquitylation, but it was reduced in the absence of the recombination proteins BRCA1 or XRCC3. Our study found no requirement for PCNA polyubiquitylation to protect cells from replication-stalling DNA damage.  相似文献   

18.
The Rad6-Rad18 complex mono-ubiquitinates proliferating cell nuclear antigen (PCNA) at the lysine 164 residue after DNA damage and promotes DNA polymerase eta (Poleta)- and Polzeta/Rev1-dependent DNA synthesis. Double-strand breaks (DSBs) of DNA can be repaired by homologous recombination (HR) or non-homologous end-joining (NHEJ), both of which require new DNA synthesis. HO endonuclease introduces DSBs into specific DNA sequences. We have shown that Polzeta and Rev1 localize to HO-induced DSBs in a Mec1-dependent manner and promote Ku-dependent DSB repair. However, Polzeta and Rev1 localize to DSBs independently of PCNA ubiquitination. Here we provide evidence indicating that Rad18-mediated PCNA ubiquitination stimulates DNA synthesis by Polzeta and Rev1 in repair of HO-induced DSBs. Ubiquitination defective PCNA mutation or rad18Delta mutation confers the same DSB repair defect as rev1Delta mutation. Consistent with a role in DSB repair, Rad18 localizes to HO-induced DSBs in a Rad6-dependent manner. Unlike Polzeta or Rev1, Poleta is dispensable for repair of HO-induced DSBs. Ku and DNA ligase IV constitute a central NHEJ pathway. We also show that Polzeta and Rev1 act in the same pathway as DNA ligase IV, suggesting that Polzeta and Rev1 are involved in DNA synthesis during NHEJ. Our results suggest that Polzeta-Rev1 accumulates at regions near DSBs independently of PCNA ubiquitination and then interacts with ubiquitinated PCNA to facilitate DNA synthesis.  相似文献   

19.
DNA damage tolerance relies on homologous recombination (HR) and translesion synthesis (TLS) mechanisms to fill in the ssDNA gaps generated during passing of the replication fork over DNA lesions in the template. Whereas TLS requires specialized polymerases able to incorporate a dNTP opposite the lesion and is error‐prone, HR uses the sister chromatid and is mostly error‐free. We report that the HR protein Rad52—but not Rad51 and Rad57—acts in concert with the TLS machinery (Rad6/Rad18‐mediated PCNA ubiquitylation and polymerases Rev1/Pol ζ) to repair MMS and UV light‐induced ssDNA gaps through a non‐recombinogenic mechanism, as inferred from the different phenotypes displayed in the absence of Rad52 and Rad54 (essential for MMS‐ and UV‐induced HR); accordingly, Rad52 is required for efficient DNA damage‐induced mutagenesis. In addition, Rad52, Rad51, and Rad57, but not Rad54, facilitate Rad6/Rad18 binding to chromatin and subsequent DNA damage‐induced PCNA ubiquitylation. Therefore, Rad52 facilitates the tolerance process not only by HR but also by TLS through Rad51/Rad57‐dependent and ‐independent processes, providing a novel role for the recombination proteins in maintaining genome integrity.  相似文献   

20.
DNA damage response is crucial for maintaining genomic integrity and preventing cancer by coordinating the activation of checkpoints and the repair of damaged DNA. Central to DNA damage response are the two checkpoint kinases ATM and ATR that phosphorylate a wide range of substrates. RING finger and WD repeat domain 3 (RFWD3) was initially identified as a substrate of ATM/ATR from a proteomic screen. Subsequent studies showed that RFWD3 is an E3 ubiquitin ligase that ubiquitinates p53 in vitro and positively regulates p53 levels in response to DNA damage. We report here that RFWD3 associates with replication protein A (RPA), a single-stranded DNA-binding protein that plays essential roles in DNA replication, recombination, and repair. Binding of RPA to single-stranded DNA (ssDNA), which is generated by DNA damage and repair, is essential for the recruitment of DNA repair factors to damaged sites and the activation of checkpoint signaling. We show that RFWD3 is physically associated with RPA and rapidly localizes to sites of DNA damage in a RPA-dependent manner. In vitro experiments suggest that the C terminus of RFWD3, which encompass the coiled-coil domain and the WD40 domain, is necessary for binding to RPA. Furthermore, DNA damage-induced phosphorylation of RPA and RFWD3 is dependent upon each other. Consequently, loss of RFWD3 results in the persistent foci of DNA damage marker γH2AX and the repair protein Rad51 in damaged cells. These findings suggest that RFWD3 is recruited to sites of DNA damage and facilitates RPA-mediated DNA damage signaling and repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号