首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Septins, cytoskeletal proteins with well‐characterised roles in cytokinesis, form cage‐like structures around cytosolic Shigella flexneri and promote their targeting to autophagosomes. However, the processes underlying septin cage assembly, and whether they influence S. flexneri proliferation, remain to be established. Using single‐cell analysis, we show that the septin cages inhibit S. flexneri proliferation. To study mechanisms of septin cage assembly, we used proteomics and found mitochondrial proteins associate with septins in S. flexneri‐infected cells. Strikingly, mitochondria associated with S. flexneri promote septin assembly into cages that entrap bacteria for autophagy. We demonstrate that the cytosolic GTPase dynamin‐related protein 1 (Drp1) interacts with septins to enhance mitochondrial fission. To avoid autophagy, actin‐polymerising Shigella fragment mitochondria to escape from septin caging. Our results demonstrate a role for mitochondria in anti‐Shigella autophagy and uncover a fundamental link between septin assembly and mitochondria.  相似文献   

2.
Mitochondria are essential eukaryotic organelles often forming intricate networks. The overall network morphology is determined by mitochondrial fusion and fission. Among the multiple mechanisms that appear to regulate mitochondrial fission, the ER and actin have recently been shown to play an important role by mediating mitochondrial constriction and promoting the action of a key fission factor, the dynamin‐like protein Drp1. Here, we report that the cytoskeletal component septin 2 is involved in Drp1‐dependent mitochondrial fission in mammalian cells. Septin 2 localizes to a subset of mitochondrial constrictions and directly binds Drp1, as shown by immunoprecipitation of the endogenous proteins and by pulldown assays with recombinant proteins. Depletion of septin 2 reduces Drp1 recruitment to mitochondria and results in hyperfused mitochondria and delayed FCCP‐induced fission. Strikingly, septin depletion also affects mitochondrial morphology in Caenorhabditis elegans, strongly suggesting that the role of septins in mitochondrial dynamics is evolutionarily conserved.  相似文献   

3.
Group II introns are large catalytic RNAs that are found in bacteria and organellar genomes of lower eukaryotes, but are particularly prevalent within mitochondria in plants, where they are present in many critical genes. The excision of plant mitochondrial introns is essential for respiratory functions, and is facilitated in vivo by various protein cofactors. Typical group II introns are classified as mobile genetic elements, consisting of the self‐splicing ribozyme and its own intron‐encoded maturase protein. A hallmark of maturases is that they are intron‐specific, acting as cofactors that bind their intron‐containing pre‐RNAs to facilitate splicing. However, the degeneracy of the mitochondrial introns in plants and the absence of cognate intron‐encoded maturase open reading frames suggest that their splicing in vivo is assisted by ‘trans’‐acting protein factors. Interestingly, angiosperms harbor several nuclear‐encoded maturase‐related (nMat) genes that contain N‐terminal mitochondrial localization signals. Recently, we established the roles of two of these paralogs in Arabidopsis, nMAT1 and nMAT2, in the splicing of mitochondrial introns. Here we show that nMAT4 (At1g74350) is required for RNA processing and maturation of nad1 introns 1, 3 and 4 in Arabidopsis mitochondria. Seed germination, seedling establishment and development are strongly affected in homozygous nmat4 mutants, which also show modified respiration phenotypes that are tightly associated with complex I defects.  相似文献   

4.
The assembly of vital reactive iron‐sulfur (Fe‐S) cofactors in eukaryotes is mediated by proteins inherited from the original mitochondrial endosymbiont. Uniquely among eukaryotes, however, Entamoeba and Mastigamoeba lack such mitochondrial‐type Fe‐S cluster assembly proteins and possess instead an analogous bacterial‐type system acquired by lateral gene transfer. Here we demonstrate, using immunomicroscopy and biochemical methods, that beyond their predicted cytosolic distribution the bacterial‐type Fe‐S cluster assembly proteins NifS and NifU have been recruited to function within the relict mitochondrial organelles (mitosomes) of Entamoeba histolytica. Both Nif proteins are 10‐fold more concentrated within mitosomes compared with their cytosolic distribution suggesting that active Fe‐S protein maturation occurs in these organelles. Quantitative immunoelectron microscopy showed that amoebal mitosomes are minute but highly abundant cellular structures that occupy up to 2% of the total cell volume. In addition, protein colocalization studies allowed identification of the amoebal hydroperoxide detoxification enzyme rubrerythrin as a mitosomal protein. This protein contains functional Fe‐S centres and exhibits peroxidase activity in vitro. Our findings demonstrate the role of analogous protein replacement in mitochondrial organelle evolution and suggest that the relict mitochondrial organelles of Entamoeba are important sites of metabolic activity that function in Fe‐S protein‐mediated oxygen detoxification.  相似文献   

5.
Mitochondria are essential organelles with dynamic morphology and function. Post‐translational modifications (PTMs), which include protein ubiquitination, are critically involved in animal and yeast mitochondrial dynamics. How PTMs contribute to plant mitochondrial dynamics is just beginning to be elucidated, and mitochondrial enzymes involved in ubiquitination have not been reported from plants. In this study, we identified an Arabidopsis mitochondrial localized ubiquitin protease, UBP27, through a screen that combined bioinformatics and fluorescent fusion protein targeting analysis. We characterized UBP27 with respect to its membrane topology and enzymatic activities, and analysed the mitochondrial morphological changes in UBP27T‐DNA insertion mutants and overexpression lines. We have shown that UBP27 is embedded in the mitochondrial outer membrane with an Nin–Cout orientation and possesses ubiquitin protease activities in vitro. UBP27 demonstrates similar sub‐cellular localization, domain structure, membrane topology and enzymatic activities with two mitochondrial deubiquitinases, yeast ScUBP16 and human HsUSP30, which indicated that these proteins are functional orthologues in eukaryotes. Although loss‐of‐function mutants of UBP27 do not show obvious phenotypes in plant growth and mitochondrial morphology, UBP27 overexpression can change mitochondrial morphology from rod to spherical shape and reduce the mitochondrial association of dynamin‐related protein 3 (DRP3) proteins, large GTPases that serve as the main mitochondrial fission factors. Thus, our study has uncovered a plant ubiquitin protease that plays a role in mitochondrial morphogenesis possibly through modulation of the function of organelle division proteins.  相似文献   

6.
Yeast verprolin, encoded by VRP1, is implicated in cell growth, cytoskeletal organization, endocytosis and mitochondrial protein distribution and function. We show that verprolin is also required for bipolar bud-site selection. Previously we reported that additional actin suppresses the temperature-dependent growth defect caused by a mutation in VRP1. Here we show that additional actin suppresses all known defects caused by vrp1-1 and conclude that the defects relate to an abnormal cytoskeleton. Using the two-hybrid system, we show that verprolin binds actin. An actin-binding domain maps to the LKKAET hexapeptide located in the first 70 amino acids. A similar hexapeptide in other acting-binding proteins was previously shown to be necessary for actin-binding activity. The entire 70– amino acid motif is conserved in novel higher eukaryotic proteins that we predict to be actin-binding, and also in the actin-binding proteins, WASP and N-WASP. Verprolin-GFP in live cells has a cell cycle-dependent distribution similar to the actin cortical cytoskeleton. In fixed cells hemagglutinin-tagged Vrp1p often co-localizes with actin in cortical patches. However, disassembly of the actin cytoskeleton using Latrunculin-A does not alter verprolin's location, indicating that verprolin establishes and maintains its location independent of the actin cytoskeleton. Verprolin is a new member of the actin-binding protein family that serves as a polarity development protein, perhaps by anchoring actin. We speculate that the effects of verprolin upon the actin cytoskeleton might influence mitochondrial protein sorting/function via mRNA distribution.  相似文献   

7.
Mesenchymal stem cells (MSCs) are multipotent cells, which have the capability to differentiate into various mesenchymal tissues such as bone, cartilage, fat, tendon, muscle, and marrow stroma. However, they lose the capability of multi‐lineage differentiation after several passages. It is known that basic fibroblast growth factor (bFGF) increases growth rate, differentiation potential, and morphological changes of MSCs in vitro. In this report, we have used 2‐DE coupled to MS to identify differentially expressed proteins at the cell membrane level in MSCs growing in bFGF containing medium. The cell surface proteins isolated by the biotin–avidin affinity column were separated by 2‐DE in triplicate experiments. A total of 15 differentially expressed proteins were identified by quadrupole‐time of flight tandem MS. Nine of the proteins were upregulated and six proteins were downregulated in the MSCs cultured with bFGF containing medium. The expression level of three actin‐related proteins, F‐actin‐capping protein subunit alpha‐1, actin‐related protein 2/3 complex subunit 2, and myosin regulatory light chain 2, was confirmed by Western blot analysis. The results indicate that the expression levels of F‐actin‐capping protein subunit alpha‐1, actin‐related protein 2/3 complex subunit 2, and myosin regulatory light chain 2 are important in bFGF‐induced morphological change of MSCs.  相似文献   

8.
9.
During clathrin‐mediated endocytosis (CME), actin assembly provides force to drive vesicle internalization. Members of the Wiskott–Aldrich syndrome protein (WASP) family play a fundamental role stimulating actin assembly. WASP family proteins contain a WH2 motif that binds globular actin (G‐actin) and a central‐acidic motif that binds the Arp2/3 complex, thus promoting the formation of branched actin filaments. Yeast WASP (Las17) is the strongest of five factors promoting Arp2/3‐dependent actin polymerization during CME. It was suggested that this strong activity may be caused by a putative second G‐actin‐binding motif in Las17. Here, we describe the in vitro and in vivo characterization of such Las17 G‐actin‐binding motif (LGM) and its dependence on a group of conserved arginine residues. Using the yeast two‐hybrid system, GST‐pulldown, fluorescence polarization and pyrene‐actin polymerization assays, we show that LGM binds G‐actin and is necessary for normal Arp2/3‐mediated actin polymerization in vitro. Live‐cell fluorescence microscopy experiments demonstrate that LGM is required for normal dynamics of actin polymerization during CME. Further, LGM is necessary for normal dynamics of endocytic machinery components that are recruited at early, intermediate and late stages of endocytosis, as well as for optimal endocytosis of native CME cargo. Both in vitro and in vivo experiments show that LGM has relatively lower potency compared to the previously known Las17 G‐actin‐binding motif, WH2. These results establish a second G‐actin‐binding motif in Las17 and advance our knowledge on the mechanism of actin assembly during CME.   相似文献   

10.
Mitochondrial–nuclear incompatibility has a major role in reproductive isolation between species. However, the underlying mechanism and driving force of mitochondrial–nuclear incompatibility remain elusive. Here, we report a pentatricopeptide repeat‐containing (PPR) protein, Ccm1, and its interacting partner, 15S rRNA, to be involved in hybrid incompatibility between two yeast species, Saccharomyces cerevisiae and Saccharomyces bayanus. S. bayanus‐Ccm1 has reduced binding affinity for S. cerevisiae‐15S rRNA, leading to respiratory defects in hybrid cells. This incompatibility can be rescued by single mutations on several individual PPR motifs, demonstrating the highly evolvable nature of PPR proteins. When we examined other PPR proteins in the closely related Saccharomyces sensu stricto yeasts, about two‐thirds of them showed detectable incompatibility. Our results suggest that fast co‐evolution between flexible PPR proteins and their mitochondrial RNA substrates may be a common driving force in the development of mitochondrial–nuclear hybrid incompatibility.  相似文献   

11.
The plant‐specific pentatricopeptide repeat (PPR) proteins with variable PPR repeat lengths (PLS‐type) and protein extensions up to the carboxyterminal DYW domain have received attention as specific recognition factors for the C‐to‐U type of RNA editing events in plant organelles. Here, we report a DYW‐protein knockout in the model plant Physcomitrella patens specifically affecting mitochondrial RNA editing positions cox1eU755SL and rps14eU137SL. Assignment of DYW proteins and RNA editing sites might best be corroborated by data from a taxon with a slightly different, yet similarly manageable low number of editing sites and DYW proteins. To this end we investigated the mitochondrial editing status of the related funariid moss Funaria hygrometrica. We find that: (i) Funaria lacks three mitochondrial RNA editing positions present in Physcomitrella, (ii) that F. hygrometrica cDNA sequence data identify nine DYW proteins as clear orthologues of their P. patens counterparts, and (iii) that the ‘missing’ 10th DYW protein in F. hygrometrica is responsible for two mitochondrial editing sites in P. patens lacking in F. hygrometrica (nad3eU230SL, nad4eU272SL). Interestingly, the third site of RNA editing missing in F. hygrometrica (rps14eU137SL) is addressed by the DYW protein characterized here and the presence of its orthologue in F. hygrometrica is explained through its simultaneous action on site cox1eU755SL conserved in both mosses.  相似文献   

12.
O‐linked β‐N‐acetylglucosamine (O‐GlcNAc) is a widespread modification of serine/threonine residues of nucleocytoplasmic proteins. Recently, several key contractile proteins in rat skeletal muscle (i.e., myosin heavy and light chains and actin) were identified as O‐GlcNAc modified. Moreover, it was demonstrated that O‐GlcNAc moieties involved in contractile protein interactions could modulate Ca2+ activation parameters of contraction. In order to better understand how O‐GlcNAc can modulate the contractile activity of muscle fibers, we decided to identify the sites of O‐GlcNAc modification in purified contractile protein homogenates. Using an MS‐based method that relies on mild β‐elimination followed by Michael addition of DTT (BEMAD), we determined the localization of one O‐GlcNAc site in the subdomain four of actin and four O‐GlcNAc sites in the light meromyosin region of myosin heavy chains (MHC). According to previous reports concerning the role of these regions, our data suggest that O‐GlcNAc sites might modulate the actin–tropomyosin interaction, and be involved in MHC polymerization or interactions between MHC and other contractile proteins. Thus, the results suggest that this PTM might be involved in protein–protein interactions but could also modulate the contractile properties of skeletal muscle.  相似文献   

13.
Background information. The F‐BAR {Fes/CIP4 [Cdc42 (cell division cycle 42)‐interacting protein 4] homology and BAR (Bin/amphiphysin/Rvs)} proteins have emerged as important co‐ordinators of signalling pathways that regulate actin assembly and membrane dynamics. The presence of the F‐BAR domain is the hallmark of this family of proteins and the CIP4 (Cdc42‐interacting protein 4) was one of the first identified vertebrate F‐BAR proteins. There are three human CIP4 paralogues, namely CIP4, FBP17 (formin‐binding protein 17) and Toca‐1 (transducer of Cdc42‐dependent actin assembly 1). The CIP4‐like proteins have been implicated in Cdc42‐dependent actin reorganization and in regulation of membrane deformation events visible as tubulation of lipid bilayers. Results. We performed side‐by‐side analyses of the three CIP4 paralogues. We found that the three CIP4‐like proteins vary in their effectiveness to catalyse membrane tubulation and actin reorganization. Moreover, we show that the CIP4‐dependent membrane tubulation is enhanced in the presence of activated Cdc42. Some F‐BAR members have been shown to have a role in the endocytosis of the EGF (epidermal growth factor) receptor and this prompted us to study the involvement of the CIP4‐like proteins in signalling of the PDGFRβ [PDGF (platelet‐derived growth factor) β‐receptor]. We found that knock‐down of CIP4‐like proteins resulted in a prolonged formation of PDGF‐induced dorsal ruffles, as well as an increased PDGF‐dependent cell migration. This was most likely a consequence of a sustained PDGFRβ activation caused by delayed internalization of the receptor in the cells treated with siRNA (small interfering RNA) specific for the CIP4‐like proteins. Conclusions. Our findings show that CIP4‐like proteins induced membrane tubulation downstream of Cdc42 and that they have important roles in PDGF‐dependent actin reorganization and cell migration by regulating internalization and activity of the PDGFRβ. Moreover, the results suggest an important role for the CIP4‐like proteins in the regulation of the activity of the PDGFRβ.  相似文献   

14.
The opportunistic pathogen Aspergillus fumigatus is ubiquitous in the environment and predominantly infects immunocompromised patients. The functions of many genes remain unknown despite sequencing of the fungal genome. A putative translation elongation factor 1Bγ (eEF1Bγ, termed elfA; 750 bp) is expressed, and exhibits glutathione S‐transferase activity, in A. fumigatus. Here, we demonstrate the role of ElfA in the oxidative stress response, as well as a possible involvement in translation and actin cytoskeleton organization, respectively. Comparative proteomics, in addition to phenotypic analysis, under basal and oxidative stress conditions, demonstrated a role for A. fumigatus elfA in the oxidative stress response. An elfA‐deficient strain (A. fumigatus ΔelfA) was significantly more sensitive to the oxidants H2O2, diamide, and 4,4′‐dipyridyl disulfide (DPS) than the wild‐type. This was further supported with the identification of differentially expressed proteins of the oxidative stress response, including; mitochondrial peroxiredoxin Prx1, molecular chaperone Hsp70 and mitochondrial glycerol‐3‐phosphate dehydrogenase. Phenotypic analysis also revealed that A. fumigatus ΔelfA was significantly more tolerant to voriconazole than the wild‐type. The differential expression of two aminoacyl‐tRNA synthetases suggests a role for A. fumigatus elfA in translation, while the identification of actin‐bundling protein Sac6 and vacuolar dynamin‐like GTPase VpsA link A. fumigatus elfA to the actin cytoskeleton. Overall, this work highlights the diverse roles of A. fumigatus elfA, with respect to translation, oxidative stress and actin cytoskeleton organization. In addition to this, the strategy of combining targeted gene deletion with comparative proteomics for elucidating the role of proteins of unknown function is further revealed.  相似文献   

15.
Protein–protein interactions are thought to be mediated by domains, which are autonomous folding units of proteins. Recently, a second type of interaction has been suggested, mediated by short segments termed linear motifs, which are related to recognition elements of intrinsically disordered regions. Here, we propose a third kind of protein–protein recognition mechanism, mediated by disordered regions longer than 20–30 residues. Bioinformatics predictions and well‐characterized examples, such as the kinase‐inhibitory domain of Cdk inhibitors and the Wiskott–Aldrich syndrome protein (WASP)‐homology domain 2 of actin‐binding proteins, show that these disordered regions conform to the definition of domains rather than motifs, i.e., they represent functional, evolutionary, and structural units. Their functions are distinct from those of short motifs and ordered domains, and establish a third kind of interaction principle. With these points, we argue that these long disordered regions should be recognized as a distinct class of biologically functional protein domains.  相似文献   

16.
17.
The bacterial surface protein InlB mediates internalisation of Listeria monocytogenes into human cells through interaction with the host receptor tyrosine kinase, Met. InlB‐mediated entry requires localised polymerisation of the host actin cytoskeleton. Apart from actin polymerisation, roles for other host processes in Listeria entry are unknown. Here, we demonstrate that exocytosis in the human cell promotes InlB‐dependent internalisation. Using a probe consisting of VAMP3 with an exofacial green fluorescent protein tag, focal exocytosis was detected during InlB‐mediated entry. Exocytosis was dependent on Met tyrosine kinase activity and the GTPase RalA. Depletion of SNARE proteins by small interfering RNA demonstrated an important role for exocytosis in Listeria internalisation. Depletion of SNARE proteins failed to affect actin filaments during internalisation, suggesting that actin polymerisation and exocytosis are separable host responses. SNARE proteins were required for delivery of the human GTPase Dynamin 2, which promotes InlB‐mediated entry. Our results identify exocytosis as a novel host process exploited by Listeria for infection.  相似文献   

18.
19.
Asian citrus psyllid Diaphorina citri is the vector of the citrus Huanglongbing (HLB) associated bacterial agent ‘Candidatus Liberibacter asiaticus’ (CLas). The molecular interactions between CLas and D. citri remain unclear. In the present study, protein profiles of mitochondrial, microsomal and cytosolic fractions from uninfected and CLas‐infected adult D. citri are investigated using two‐dimensional gel electrophoresis. The comparative analysis reveals a total of 18, 24 and 20 protein spots that are unique or differentially expressed in mitochondrial, microsomal and cytosolic proteins fractions respectively. These proteins are successfully identified by mass spectrometry. Among the 62 identified proteins, 30 are up‐regulated, whereas 32 are down‐regulated. These proteins include important components in energy metabolism such as ATP synthase, ATPase, ATP/ADP carrier protein, etc.; host stress responses such as heat shock proteins; host detoxification processes (i.e., cytochrome P450 and glutathione S‐transferase); and the cytoskeleton (such as actin, tubulin, myosin and tropomyosin). These data suggest that, after CLas infection, several proteins of D. citri, especially energy metabolism and protein biosynthesis, are altered, and extensive host defence responses are induced. In conclusion, the present study reports proteomic information that is helpful in understanding the vector–pathogen relationship between CLas and D. citri, and could be used to identify potential targets for limiting the spread of CLas, as well as to provide new insights into HLB management.  相似文献   

20.
Although environmental stress likely plays a significant role in promoting aging, the relationship remains poorly understood. To characterize this interaction in a more comprehensive manner, we examined the stress response profiles for 46 long‐lived yeast mutant strains across four different stress conditions (oxidative, ER, DNA damage, and thermal), grouping genes based on their associated stress response profiles. Unexpectedly, cells lacking the mitochondrial AAA protease gene AFG3 clustered strongly with long‐lived strains lacking cytosolic ribosomal proteins of the large subunit. Similar to these ribosomal protein mutants, afg3Δ cells show reduced cytoplasmic mRNA translation, enhanced resistance to tunicamycin that is independent of the ER unfolded protein response, and Sir2‐independent but Gcn4‐dependent lifespan extension. These data demonstrate an unexpected link between a mitochondrial protease, cytoplasmic mRNA translation, and aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号