首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Seventy-nine Trichoderma strains were isolated from soil taken from 28 commercial plantations of Agave tequilana cv. ‘Azul’ in the State of Jalisco, Mexico. Nine of these isolates produced nonvolatile metabolites that completely inhibited the growth of Thielaviopsis paradoxa on potato dextrose agar plates. These isolates were identified as Trichoderma longibrachiatum on the basis of their morphology and DNA sequence analysis of two genes (ITS rDNA and translation elongation factor EF-1α). Mycoparasitism of Th. paradoxa by T. longibrachiatum strains in dual cultures was examined by scanning electron microscopy. The Trichoderma hyphae grew alongside the Th. paradoxa hyphae, but penetration of Thielaviopsis hyphae by Trichoderma was no apparent. Aleurioconidia of Th. paradoxa were parasitized by Trichoderma. Both hyphae and aleurioconidia of Th. paradoxa lost turgor pressure, wrinkled, collapsed and finally disintegrated. In liquid cultures, all nine Trichoderma isolates produced proteases, β-1,3-glucanases and chitinases that would be responsible for the degradation of Thielaviopsis hyphae. These results demonstrate that the modes of action of T. longibrachiatum involved against Th. paradoxa in vitro experiments are mycoparasitism and the production of nonvolatile toxic metabolites.  相似文献   

2.
Trichoderma species are collected from different location of sugarbeet growing areas of Tamil Nadu and it is effective against Sclerotium rolfsii pathogen caused by sugarbeet ecosystems. Out of thirty-one isolates of Trichoderma viride and four isolates of Trichoderma harzianum collected and tested for their antagonistic activity against S. rolfsii by dual culture technique, one isolate was found to be effective T. viride (TVB1) that recorded the maximum (73.03%) inhibition on the mycelial growth recording only 2.40 cm growth as against 8.90 cm in the control. The isolates of T. harzianum THB-1 recorded 71.19% mycelial growth reduction over control. The colonisation behaviour of T. viride (TVB1) revealed that it completely over grew on pathogen within 48 h after interaction with the pathogen, and speed of growth on pathogen was also high and it possesses a higher level of competitive saprophytic ability. The best four isolates of TVB1, TVB-2, TVB-3 and TVB31 and two isolates of T. harzianum THB-1 and THB-2 were compared with other species of Trichoderma longibrachiatum, Trichoderma reesei, Trichoderma koningii and Chaetomium globosum and tested under in vitro condition. BA of neem cake at 150 kg ha?1 + T. viride isolate (TVB1) at 2.5 kg/ha recorded least root rot disease incidence of 17.05% which accounted for 75.37% disease reduction over control and highest recorded maximum root yield 65.73 t ha?1 and increasing sugar content.  相似文献   

3.
The present investigation aimed to isolate the causative agents of onion purple blotch and Stemphylium blight diseases and evaluate the efficacy of certain plant extracts against the two identified pathogens, in vitro and under greenhouse condition. Fourteen isolates of S. vesicarium and two isolates of Alternaria porri were tested for pathogenicity. The results indicated that all isolates were able to produce the symptoms of Stemphylium blight and onion purple blotch diseases with different degrees of severity ranging from 10.42 to 81.25%. A. porri No. 6022 caused the highest disease severity (81.25%), while S. vesicarium No. 6003 was the best one out of the tested 14 isolates (37.5%). Antifungal activity of some aqueous plant extracts (Azadirachta indica, Cydonia oblonga, Datura stramonium, Eucalyptus globulus, Foeniculum vulgare, Ocimum basilicum, Rosmarinus officinalis and Salix mucronata) was assayed in vitro by dry weight technique. The data indicated that there were significant differences between these extracts in their effect on fungal growth of A. porri and S. vesicarium and the best were A. indica and D. stramonium. Under greenhouse conditions, application of the aqueous extract of A. indica either before or after 48?h A. porri inoculation produced the highest reduction in disease severity comprising 70 and 74.7%, respectively. On the other hand, the highest percentage of disease reduction before and after 48?h S. vesicarium inoculation was produced by Ridomil gold plus reached to 84.4 and 95.8% respectively, followed by the aqueous extract of A. indica (74.1 and 89.7, respectively). According to our results, it can be concluded that plant extracts of A. indica and D. stramonium can be used for the biocontrol of purple blotch and Stemphylium blight diseases instead of fungicides to minimise the risks and hazards of using toxic fungicides.  相似文献   

4.
5.
Twenty Trichoderma isolates were collected on 13 Serbian Agaricus bisporus farms and one in Bosnia and Herzegovina during 2006–2010. Twelve isolates were classified into five species by standard mycological studies and ITS1/ITS4 sequence analyses, namely Trichoderma atroviride, Trichoderma koningii, Trichoderma virens, Trichoderma aggressivum f. europaeum and Trichoderma harzianum. Eight isolates were not identified to the species level but were shown to be related to T. harzianum. The isolates of T. harzianum exhibited the highest virulence to the harvested A. bisporus pilei and T. virens and T. aggressivum f. europaeum the lowest. Antifungal activity of two biofungicides based on Bacillus subtilis and tea tree oil and the fungicide prochloraz manganese were tested in vitro to all Trichoderma isolates. Prochloraz manganese and B. subtilis were highly toxic to all tested Trichoderma isolates, their ED50 values were below 0.3 and 1.3 mg L?1, respectively. Tea tree oil did not exhibit a significant antifungal activity (ED50 = 11.9–370.8 mg L?1). The effectiveness of biofungicides was evaluated against T. harzianum in a mushroom growing room, and they were applied alone or in combination with the fungicide at a respective proportion of 20:80%. Prochloraz manganese showed higher effectiveness than both tested biofungicides or their respective mixtures. The biofungicide based on B. subtilis demonstrated greater effectiveness in preventing disease symptoms than tea tree oil. B. subtilis combined with the fungicide revealed less antagonism in effectiveness against pathogen than tea tree oil.  相似文献   

6.
The biological efficacy of Trichoderma species may differ due to variations in ecosystems. This study was conducted to assess the biocontrol efficacy of some native Trichoderma isolates against Fusarium solani, an important causal agent of potato wilt disease under laboratory and greenhouse conditions at Shahrood Agricultural Research Centre, Shahrood, Iran, during 2006–2007. Fourteen isolates were collected among which eight showed promising ability in inhibiting the growth of the pathogen through dual culture and production of volatile and non-volatile inhibitors but T. brevicompactum (T1), T. longibrachiatum (T5) and T. asperellum (T2) were almost better than other isolates in inhibiting the mycelial growth of the pathogen in comparison to control in the above three tests (p ≤ 0.01). Isolates performing mycoparasitism under in vitro condition were evaluated against the disease in pot culture under greenhouse condition. In all treatments in which Trichoderma isolates + F. solani were involved lower disease incidence was noticed in comparison to Fusarium-infested control (p ≤ 0.05). Best disease control was observed in potted plants treated with F. solani + T. longibrachiatum (T5) with 6.25% disease incidence in comparison to Fusarium-infested control, in which disease incidence was observed to be 75%. Interaction of T. brevicompactum (T1) and F. solani also indicated good control of the disease by 12.50% of disease incidence.  相似文献   

7.
Six isolates of Trichoderma were screened for antagonism to Armillaria in tea stem sections buried in the soil. The inability of Armillaria to invade Trichoderma-colonized stem sections and the reduction of its viability in the plant materials following invasion of these by Trichoderma were used as indicators of antagonism. Four isolates of the species Trichoderma harzianum significantly (P<0.001) reduced the incidence of the pathogen in the plant materials. Isolate T4 completely eliminated the pathogen from plant materials in sterile soil and also antagonized two different isolates of the pathogen in nonsterile soil. Application of this T. harzianum isolate to the soil as a wheat bran culture significantly (P<0.001) reduced viability of Armillaria in woody blocks of inoculum. Soil amendment with coffee pulp also reduced the inoculum viability but did not affect the incidence of Trichoderma in the blocks of inoculum. We conclude that the direct application of wheat bran-formulated T. harzianum into soil surrounding woody Armillaria inoculum sources can suppress the pathogen. Further, no organic amendment is needed to enhance development of the antagonist in the soil as a pre-requisite to suppressing the pathogen.  相似文献   

8.
In vitro, Trichoderma album, Trichoderma harzianum, Trichoderma koningii, Trichoderma viride and Trichoderma virens showed antagonistic effect against the most pathogenic isolate (Sc2) of Sclerotium cepivorum, the cause of onion white rot disease. Five Trichoderma preparations of each Trichoderma sp. were prepared on wheat bran powder to be used for controlling white rot disease of onion. Greenhouse and field experiments followed the same trend where T. harzianum and T. koningii were the most effective in reducing the incidence and severity of white rot disease compared with the control. Trichoderma species preparations caused promotion to vegetative parameters of onion plants in pots and increase bulb productivity in filed. In this regard, T. harzianum and T. koningii were the most effective. A positive correlation was found between the biocontrol activity of Trichoderma species preparations and enhancement of peroxidase, polyphenoloxidase and chitinase enzymes in onion plants to resist infection with S. cepivorum.  相似文献   

9.
Mycoparasitic activities of various isolates of Trichoderma viride, T. harzianum, T. hamatum, T. longibrachiatum, T. koningii, T. pseudokoningii, Gliocladium virens and Laetisaria arvalis were studied against a serious plant pathogen, Botryodiplodia theobromae by scanning electron microscopy (SEM). Macroscopic observations of fungal growth in dual-cultures revealed that most of the isolates made hyphal contact with the pathogen within 2 days after inoculation, leading to the inhibition in pathogen growth. However, T. viride Tv-4, T. hamatum and T. pseudokoningii inhibited pathogen growth before hyphal contact and exhibited an inhibition zone between the colonies of both fungi. SEM investigations demonstrated that in case of hyphal interaction, the firm binding of antagonists (T. viride Tv-1 & Tv-3, T. harzianum Th-1 & Th-2, T. longibrachiatum and L. arvalis) to B. theobromae hyphae established either by coiling around its hyphae, or by penetrating its hyphal cells by forming hooks, haustoria and appressoria-like structures which invariably led to cell disruption. Although T. koningii and G. virens Gv-2 & Gv-3 did not interact physically by way of coiling and penetration, they produced wall lytic enzymes or antifungal substances after coming in contact with B. theobromae which caused wrinkling, bursting and collapsing of pathogen mycelium. It is, therefore, suggested that the outcome of the interaction of antagonist and pathogen was most likely determined by initial hyphal contact that triggered a series of events in pathogen degradation.  相似文献   

10.
The interaction of the pathogen Fusarium moniliforme and two antagonistic Trichoderma harzianum isolates was studied especially with respect to their secondary metabolites fusaric acid (FA) and 6‐pentyl‐alpha‐pyrone (6PAP). Among 10 isolates of F. moniliforme screened for FA production on maize kernels, the isolate 8 accumulated the highest amount of FA (678 μg/g). Mycelial growth and production of FA by isolate 8, determined in different liquid media revealed that the highest biomass and FA were produced in Czapek Dox Broth (CDB) followed by Richard’s solution. The amount of FA per gram mycelial dry weight reached its maximum in CDB and Richard’s solution after 14 days of incubation. Mycelial growth and conidia production of both Trichoderma isolates (T16 and T23) were retarded by increasing concentrations of FA in agar medium. At FA concentration of 300 mg/ml the radial mycelial growth of the isolates T16 and T23 were retarded by 32.5% and 45%, respectively. Conidia production was diminished in a similar extent as mycelial growth. Both T. harzianum isolates were capable to degrade FA in potato dextrose broth medium, particularly when lower doses of FA were present. In the presence of 50 mg/ml FA in the culture medium, the isolates T23 and T16 reduced FA by 51.4% and 88.4%, respectively, 9 days post‐inoculation. The antifungal metabolite 6PAP, isolated from T. harzianum T23 cultures, was introduced at different concentrations into 2‐day‐old cultures of F. moniliforme. After further 5 days of incubation of F. moniliforme in the presence of 6PAP, the FA contents per gram mycelial dry weight were significantly decreased compared to control cultures where 6PAP was absent. Dosages of 300 and 400 mg/l of 6PAP in the cultures retarded FA accumulations by 62.5% and 77.2%, respectively. The current results, however, provided the first evidence for activity of 6PAP, as a Trichoderma secondary metabolite, on degrading/synthesis suppression of the Fusarium toxin FA.  相似文献   

11.
The genus Trichoderma is a potential biocontrol agent against several phytopathogenic fungi. One parameter for its successful use is an efficient coiling process followed by a substantial production of hydrolytic enzymes. The interaction between fifteen isolates of Trichoderma harzianum and the soil-borne plant pathogen, Rhizoctonia solani, was studied by light microscopy and transmission electron microscopy (TEM). Macroscopic observations of fungal growth in dual cultures revealed that growth inhibition of the pathogen occurred soon after contact with the antagonist. All T. harzianum isolates tested exhibited coiling around the hyphae of R. solani. The strains ALL23, ALL40, ALL41, ALL43 and ALL49 did not differ in coiling frequency and gave equal coiling performances. No correlation between coiling frequency and the production of cell wall-degrading chitinases, N-acetyl-β-d-glucosaminidase and β-1,3-glucanases, was found.  相似文献   

12.
Thirty-five strains ofTrichoderma viride andT. harzianum were screened for their antagonistic ability against the rice sheath blight pathogen,Rhizoctonia solani. The strains that inhibited/overgrew the phytopathogenic fungus were considered effective. Light microscopic studies showed the antagonism of the hyphae of effectiveTrichoderma strains towards their host hyphae. Chitinase activity ofTrichoderma culture filtrates was enhanced, when colloidal chitin was used as the sole carbon source, instead of glucose. Chitinase pattern differed among the four select strains. The chitinase isoforms are induced differentially by carbon sources. The chitin affinity column fraction ofTrichoderma culture filtrate inhibited,in vitro, the growth ofR. solani.  相似文献   

13.
Date palm is an important subsistence crop in arid regions due to its ability to grow under adverse environmental conditions such as high temperature, salinity and drought. Nevertheless, ideal conditions for its growth and production are also favourable to fungal diseases such as black scorch disease caused by Ceratocystis radicicola. The aim of this study was to develop a method of biological control through the isolation, identification and examination of the effectiveness of bioagents in controlling black scorch disease. Twenty‐five isolates of Trichoderma spp. were isolated from the rhizosphere of healthy date palm trees and morphological, microscopic and molecular approaches confirmed the identity of 11 isolates as Trichoderma harzianum species complex (THSC). In vivo study, application of both spore suspension and culture filtrates of T. harzianum decreased the size of necroses caused by Cradicicola. Additionally, scanning electron microscopy (SEM) showed lysis of the hyphal pathogen and phialoconidia along with scattered aleurioconidia. Results from the volatile metabolic assay and SEM suggested potential roles of cell wall degradation enzymes and volatile substances produced by Tharzianum as two collective mechanisms leading to degrade the cell wall of the pathogen and inhibit fungal growth. Altogether, results from our study demonstrated the efficacy and utility of using bioagents to control black scorch disease which could improve date palm yield.  相似文献   

14.
Leaf spot disease caused by Cercospora beticola Sacc. (class Ascomycota, ord. Dothideales, fam. Mycosphaerellaceae) is the most destructive foliar disease of sugar beet. Commercial varieties are partially resistant and require repeated fungicide applications to obtain adequate protection levels; this has a high environmental impact and a risk of selecting resistant pathogen strains. A way of reducing chemical inputs could be to use biocontrol agents to replace or supplement fungicide treatments. A well-known class of biological control agents is represented by the fungi belonging to the Trichoderma genus (class Ascomycota, ord. Hypocreales, fam. Hypocreaceae), but there is a lack of information about its behaviour towards C. beticola. This study reports the evaluation of several Trichoderma isolates as possible biocontrol agents of this pathogen. Preliminary in vitro and in vivo assays led to the selection of two Trichoderma isolates characterised by their ability to reduce pathogen sporulation and antagonism towards the pathogen or competence for sugar beet phyllosphere. Repeated foliar applications of the liquid culture homogenate preceded by a single treatment of difenoconazole in 2 year trials under natural inoculum in field reduced the disease incidence and pathogen sporulation from the necrotic spots. An increase in sugar yield was also obtained by means of isolate Ba12/86-based treatments, perhaps due to induced resistance effects.  相似文献   

15.
Fifteen Trichoderma isolates were tested for their antagonistic ability against Lasiodiplodia theobromae. Trichoderma harzianum exhibited the greatest inhibition in dual culture. Microscopic investigation demonstrated direct parasitism and coiling of T. harzianum and T. viride around hyphae of L. theobromae, causing swollen, deformed, shortened, or rounded cells of the pathogen. Granulation of cytoplasm and disintegration of the hyphal walls of L. theobromae also were noted in dual culture. Trichoderma viride reduced rotting by 29.07 to 65.06% in artificially inoculated banana fruits. Treatment of banana fruits with T. viride 4 h prior to inoculation with L. theobromae provided better protection than simultaneous application or treatment 4 h after inoculation.  相似文献   

16.
Trichoderma is a well-known antagonist against soilborne plant pathogens. However, the species and even various isolates have different biocontrol potential. To evaluate the antagonistic activities of Trichoderma harzianum, T. harzianum strain T100 (T100), T. viride and T. haematum against Fusarium oxysporum and F. proliferatum, we used dual culture and productions of volatile and non-volatile metabolites in three different phases in vitro. An analysis of the data in dual culture tests represented T. viride, T. haematum and T100 as effective antagonists of Fusarium while T100 was the only fungus being able to lyse the confronting mycelia. Similar results were obtained in the volatile metabolites tests also. In contrast with the two previous tests, the non-volatile metabolites produced by T. harzianum inhibited Fusarium mycelial growth the most, and T100 acted moderately. It was also clearly showed that the antagonistic effect of Trichoderma spp. was more on F. proliferatum than on F. oxysporum. Finally, because Trichoderma spp. was most effective in the second phase, we recommend to use T100 against F. proliferatum at the initial stages of infection as its mycoparasitism on F. oxysporum was observed microscopically through forming apressoria structures without any coiling around the pathogen.  相似文献   

17.
Biological control of wilt of egg plant (Solanum melongena L.) caused by Fusarium solani was made with the application of five Trichoderma species, T. harzianum, T. viride, T. lignorum, T. hamatum and T. reesei. The effect of volatile and non-volatile antibiotics of Trichoderma origin on growth inhibition of the wilt pathogen was studied. T. harzianum showed maximum growth inhibition (86.44 %) of the pathogen through mycoparasitism. The non-volatiles produced by the Trichoderma species exhibited 100 % growth inhibition of the pathogen under in vitro condition. Production of siderophores and fungal cell wall degrading enzymes, chitinase and β-1,3-glucanase were found. Treatments with two most efficient Trichoderma species, T. harzianum and T. viride resulted in the decreasing population of Fusarium solani in soil thereby deterring disease incidence in field condition.  相似文献   

18.
Culture filtrates of Trichoderma harzianum Rifai have been found to inhibit zoospore germination, germ tube elongation and mycelial growth of Pythium aphanidermatum causing the damping-off disease of tobacco in Nigeria. Further, the invasion of the hyphae of P. aphanidermatum by hyphae of T. harzianum has been demonstrated in mixed cultures of the two fungi. The results of investigations on the role of T. harzianum as an agent of biological control of the damping-off disease in sterilized and unsterilized soils are reported and discussed.  相似文献   

19.
Trichoderma species has been suggested as potential biocontrol agent forFusarium verticillioides on maize. In this cereal,F. verticillioides and F. proliferatum contributed to fumonisin accumulation. In addition,F. proliferatum could produce beauvericin and fusaproliferin. The aim of this work was to evaluate the effect ofTrichoderma spp. on growth and fumonisin B1 fusaproliferin and beauvericin production byF. proliferatum. Dual cultures of F.proliferatum andT. harzianum ITEM 3636 andT. longibrachiatum ITEM 3635 on maize meal agar at 0.995 aw were done. The effect ofTrichoderma spp. on the lineal growth ofF. proliferatum was determined. The effect ofTrichoderma species on fumonisin B1, fusaproliferin and beauvericin production byF. proliferatum was determined on co-inoculated maize kernels by HPLC.T. harzianum suppressedF. proliferatum growth once contact between the colonies occurred.T. longibrachiatum showed a less antagonistic effect againstF. proliferatum. A reduction on fumonisin B1 production of 98% and 88% was observed in the co-incubation ofF. proliferatum withT. harzianum andT. longibrachiatum, respectively. The decrease of FB1 production was significant even in maize kernels on whichF. proliferatum had been growing 7 days prior to the addition ofTrichoderma spp. The concentration of beauvericin and fusaproliferin produced during 30 days coincubation ofF. proliferatum with bothTrichoderma spp. did not differ to those produced byF. proliferatum alone. These mycotoxins might enter the food chain causing so far unknown consequences to the health of domestic animals and humans. For this reason it is important, when a potential biocontrol agent is under study, to test the effect on the fungal growth and on the putative mycotoxin produced. Part of the information was presented at the Mycotoxin Prevention Cluster Dissemination Day and Mycoglobe Launch Conference, Brussels, Belgium, Oct 20–21, 2004 Financial support: Agenda Córdoba Ciencia, grant No 0279–000431/00  相似文献   

20.
Nuray Özer 《BioControl》2011,56(2):237-247
Twelve isolates belonging to the genera Aspergillus, Penicillium, and Trichoderma, from onion (Allium cepa L.)-growing soils were recently found to have antagonistic features against Aspergillus niger (An) van Tieghem, the cause of black mold disease of onion, in dual culture. In the work reported in this paper, the function of these isolates applied as seed treatment on onion seed germination was investigated. In addition, isolates with no negative effect on seeds were screened for their effect on shoot length, and for their abilities to inhibit colonization of An on seeds, to control black mold disease, to increase set bulb diameter, and to induce production of antifungal compounds in pot-grown onion sets. Application of non-aflatoxigenic A. flavus Link (AS3), T. harzianum Rifai (TRIC7) and (TRIC8) to seeds led to defense reactions with accumulation of antifungal compounds in sets, combined with increased protection against the disease, although they did not enhance bulb diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号