首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A group of N-1 and C-3 disubstituted-indole Schiff bases bearing an indole N-1 (R′ = H, CH2Ph, COPh) substituent in conjunction with a C-3 –CHN–C6H4–4-X (X = F, Me, CF3, Cl) substituent were synthesized and evaluated as inhibitors of cyclooxygenase (COX) isozymes (COX-1/COX-2). Within this group of Schiff bases, compounds 15 (R1 = CH2Ph, X = F), 17 (R1 = CH2Ph, X = CF3), 18 (R1 = COPh, X = F) and 20 (R1 = COPh, X = CF3) were identified as effective and selective COX-2 inhibitors (COX-2 IC50’s = 0.32–0.84 μM range; COX-2 selectivity index (SI) = 113 to >312 range). 1-Benzoyl-3-[(4-trifluoromethylphenylimino)methyl]indole (20) emerged as the most potent (COX-1 IC50 >100 μM; COX-2 IC50 = 0.32 μM) and selective (SI >312) COX-2 inhibitor. Furthermore, compound 20 is a selective COX-2 inhibitor in contrast to the reference drug indomethacin that is a potent and selective COX-1 inhibitor (COX-1 IC50 = 0.13 μM; COX-2 IC50 = 6.9 μM, COX-2 SI = 0.02). Molecular modeling studies employing compound 20 showed that the phenyl CF3 substituent attached to the CN spacer is positioned near the secondary pocket of the COX-2 active site, the CN nitrogen atom is hydrogen bonded (N?NH = 2.85 Å) to the H90 residue, and the indole N-1 benzoyl is positioned in a hydrophobic pocket of the COX-2 active site near W387.  相似文献   

2.
AimsXenon provides effective analgesia in several pain states at sub-anaesthetic doses. Our aim was to examine whether xenon may mediate its analgesic effect, in part, through reducing the activity of transient receptor potential vanilloid type 1 (TRPV1), a receptor known to be involved in certain inflammatory pain conditions.Main methodsWe studied the effect of xenon on capsaicin-evoked cobalt uptake in rat cultured primary sensory neurons and in human TRPV1 (hTRPV1)-expressing human embryonic kidney 293 (HEK293) cells. We also examined xenon's effect on the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in the rat spinal dorsal horn evoked by hind-paw injection of capsaicin.Key findingsXenon (75%) reduced the number of primary sensory neurons responding to the TRPV1 agonist, capsaicin (100 nM–1 μM) by ~ 25% to ~ 50%. Xenon reduced the number of heterologously-expressed hTRPV1 activated by 300 nM capsaicin by ~ 50%. Xenon (80%) reduced by ~ 40% the number of phosporylated ERK1/2-expressing neurons in rat spinal dorsal horn resulting from hind-paw capsaicin injection.SignificanceXenon substantially reduces the activity of TRPV1 in response to noxious stimulation by the specific TRPV1 agonist, capsaicin, suggesting a possible role for xenon as an adjunct analgesic where hTRPV1 is an active contributor to the excitation of primary afferents which initiates the pain sensation.  相似文献   

3.
The observation that the cyclooxygenase-2 (COX-2) isozyme is over-expressed in multiple types of cancer, relative to that in adjacent non-cancerous tissue, prompted this investigation to prepare a group of hybrid fluorescent conjugates wherein the COX inhibitors ibuprofen, (S)-naproxen, acetyl salicylic acid, a chlororofecoxib analog and celecoxib were coupled via a linker group to an acridone, dansyl or rhodamine B fluorophore. Within this group of compounds, the ibuprofen-acridone conjugate (10) showed potent and selective COX-2 inhibition (COX-2 IC50 = 0.67 μM; SI = 110.6), but its fluorescence emission (λem = 417, 440 nm) was not suitable for fluorescent imaging of cancer cells that over-express the COX-2 isozyme. In comparison, the celecoxib-dansyl conjugate (25) showed a slightly lower COX-2 potency and selectivity (COX-2 IC50 = 1.1 μM; SI > 90) than the conjugate 10, and it possesses a better fluorescence emission (λem = 500 nm). Ultimately, a celecoxib-rhodamine B conjugate (28) that exhibited moderate COX-2 potency and selectivity (COX-2 IC50 = 3.9 μM; SI > 25) having the best fluorescence emission (λem = 580 nm) emerged as the most promising biomarker for fluorescence imaging using a colon cancer cell line that over-expresses the COX-2 isozyme.  相似文献   

4.
Twenty four pyrazoline derivatives modified from Celecoxib were designed and synthesized as bi-inhibitor of COX-2 and B-Raf. They were evaluated for their COX-1/COX-2/B-Raf inhibitory and anti-proliferation activities. Compound A3 displayed the most potent activity against COX-2 and HeLa cell line (IC50 = 0.008 μM; GI50 = 19.86 μM) and showed superb COX-1/COX-2 selectivity (>500), being more potent and selective than positive control Celecoxib or 5-fluorouracil. Compounds A5 and B5 were introduced best B-Raf inhibitory activities (IC50 = 0.15 μM and 0.12 μM, respectively). Compound A4 retained superb bioactivity against COX-2 and HeLa cell line (IC50 = 0.015 μM; GI50 = 23.82 μM) and displayed moderate B-Raf inhibitory activity (IC50 = 3.84 μM). Docking simulation was conducted to give binding patterns. QSAR models were built using bioactivity data and optimized conformations to provide a future modification of COX-2/B-Raf inhibitors.  相似文献   

5.
Three novel series of diaryl heterocyclic derivatives bearing the 2-oxo-5H-furan, 2-oxo-3H-1,3-oxazole, and 1H-pyrazole moieties as the central heterocyclic ring were synthesized and their in vitro inhibitory activities on COX-1 and COX-2 isoforms were evaluated using a purified enzyme assay. The 2-oxo-5H-furan derivative 6b was identified as potent COX inhibitor with selectivity toward COX-1 (COX-1 IC50 = 0.061 μM and COX-2 IC50 = 0.325 μM; selectivity index (SI) = 0.19). Among the 1H-pyrazole derivatives, 11b was found to be a potent COX-2 inhibitor, about 38 times more potent than Rofecoxib (COX-2 IC50 = 0.011 μM and 0.398 μM, respectively), but showed no selectivity for COX-2 isoform. Compound 11c demonstrated strong and selective COX-2 inhibitory activity (COX-1 IC50 = 1 μM, COX-2 IC50 = 0.011 μM; SI = ~92). Molecular docking studies of compounds 6b and 11bd into the binding sites of COX-1 and COX-2 allowed to shed light on the binding mode of these novel COX inhibitors.  相似文献   

6.
A new group of 1, 3-benthiazinan-4-ones, possessing a methyl sulfonyl pharmacophore, were synthesized and their biological activities were evaluated for cyclooxygenase-2 (COX-2) inhibitory activity. In vitro COX-1/COX-2 inhibition studies identified 3-(p-fluoropheny)-2-(4-methylsulfonylphenyl)-1,3-benzthiazinan-4-one (7b) as a potent (IC50 = 0.05 μM) and selective (selectivity index = 259) COX-2 inhibitor.  相似文献   

7.
A new group of 3-alkyl-2-aryl-1,3-thiazinan-4-ones, possessing a methylsulfonyl pharmacophore, were synthesized and their biological activities were evaluated for cyclooxygenase-2 (COX-2) inhibitory activity. In vitro COX-1/COX-2 inhibition studies identified 3-benzyl-2-(4-methylsulfonylphenyl)-1,3-thiazinan-4-one (11a) as a potent (IC50 = 0.06 μM) and selective (selectivity index >285) COX-2 inhibitor.  相似文献   

8.
A group of cyclic imides (110) was designed for evaluation as a selective COX-2 inhibitors and investigated in vivo for their anti-inflammatory activity. Compounds 6a, 6b, 8a, 8b, 9a, 9b, 10a and 10b were proved to be potent COX-2 inhibitors with IC50 range of 0.1–4.0 μM. In vitro COX-1/COX-2 inhibition structure–activity studies identified compound 8a as a highly potent (IC50 = 0.1 μM), and an extremely selective [COX-2 (SI) > 1000] comparable to celecoxib [COX-2 (SI) > 384], COX-2 inhibitor that showed superior anti-inflammatory activity (ED50 = 72.4 mg/kg) relative to diclofenac (ED50 = 114 mg/kg). Molecular modeling was carried out through docking the designed compounds into the COX-2 binding site to predict if these compounds have analogous binding mode to the COX-2 inhibitors. The study showed that the homosulfonamide fragment of 8a inserted deep inside the 2°-pocket of the COX-2 active site, where the SO2NH2 group underwent H-bonding interaction with Gln192(2.95 Å), Phe518(2.82 Å) and Arg513(2.63 and 2.73 Å). Docking study of the synthesized compound 8a into the active site of COX-2 revealed a similar binding mode to SC-558, a selective COX-2 inhibitor.  相似文献   

9.
Zhao YR  Dong JB  Li Y  Wu MP 《Life sciences》2012,90(21-22):867-873
AimsThis study sought to assess the effect of sphingomyelin synthase 2 (SMS2) over-expression on plaque component and endothelial dysfunction in atherosclerosis.Main methodsWe generated recombinant adenovirus vectors containing human SMS2 cDNA (AdV-SMS2) or control gene GFP cDNA (AdV-GFP). Both AdVs were injected (i.v.) into ApoE KO mice to establish SMS2 over-expressing and control mice models, respectively. The mice were fed a high fat diet for 30 days. We then examined their plasma lipid levels, expression levels of aortic inflammatory biomarkers critical for the plaque's stability, and numbers of peripheral endothelial progenitor cells (EPC).Key findingsCompared with the control mice, SMS2 over-expression had significantly (1) increased aortic matrix metalloproteinase-2 (MMP-2), monocyte chemoattractant protein-1 (MCP-1), tissue factor (TF) and cyclooxygenase-2 (COX-2) mRNA levels (1.9-fold, 2.2-fold, 2.6-fold and 3.2-fold, respectively, P < 0.01) and protein levels (2.2-fold, 1.9-fold, 1.9-fold and 2.1-fold, respectively, P < 0.01); (2) increased MMP-2, COX-2 in situ expression in aortic root (2.6-fold and 2.3-fold, respectively, P < 0.01); (3) decreased aortic COX-1 mRNA levels (65%, P < 0.01) and protein levels (64%, P < 0.01); and (4) decreased CD34/KDR-positive cells (33%, P < 0.01), circulating angiogenic cells (CACs) (50%, P < 0.05), and colony forming units (CFUs) (40%, P < 0.05) in circulation.SignificanceSMS2 over-expression was probably associated with increased expression of aortic inflammatory biomarkers, as well as decreased numbers of CD34/KDR-positive cells, CACs and CFUs in circulation. Therefore, SMS2 over-expression might correlate with endothelial dysfunction and aggravate atherosclerotic plaque instability in ApoE KO mice.  相似文献   

10.
In our previous study, we designed a series of pyrazole derivatives as novel COX-2 inhibitors. In order to obtain novel dual inhibitors of COX-2 and 5-LOX, herein we designed and synthesized 20 compounds by hybridizing pyrazole with substituted coumarin who was reported to exhibit 5-LOX inhibition to select potent compounds using adequate biological trials sequentially including selective inhibition of COX-2 and 5-LOX, anti-proliferation in vitro, cells apoptosis and cell cycle. Among them, the most potent compound 11g (IC50 = 0.23 ± 0.16 μM for COX-2, IC50 = 0.87 ± 0.07 μM for 5-LOX, IC50 = 4.48 ± 0.57 μM against A549) showed preliminary superiority compared with the positive controls Celecoxib (IC50 = 0.41 ± 0.28 μM for COX-2, IC50 = 7.68 ± 0.55 μM against A549) and Zileuton (IC50 = 1.35 ± 0.24 μM for 5-LOX). Further investigation confirmed that 11g could induce human non-small cell lung cancer A549 cells apoptosis and arrest the cell cycle at G2 phase in a dose-dependent manner. Our study might contribute to COX-2, 5-LOX dual inhibitors thus exploit promising novel cancer prevention agents.  相似文献   

11.
As a part of our continued efforts to discover new COX inhibitors, a series of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones were synthesized and evaluated for in vitro COX inhibitory potential. Within this series, seven compounds (3ad, 3h, 3k and 3q) were identified as potential and selective COX-2 inhibitors (COX-2 IC50’s in 1.79–4.35 μM range; COX-2 selectivity index (SI) = 6.8–16.7 range). Compound 3b emerged as most potent (COX-2 IC50 = 1.79 μM; COX-1 IC50 >30 μM) and selective COX-2 inhibitor (SI >16.7). Further, compound 3b displayed superior anti-inflammatory activity (59.86% inhibition of edema at 5 h) in comparison to celecoxib (51.44% inhibition of edema at 5 h) in carrageenan-induced rat paw edema assay. Structure–activity relationship studies suggested that N-phenyl ring substituted with p-CF3 substituent (3b, 3k and 3q) leads to more selective inhibition of COX-2. To corroborate obtained experimental biological data, molecular docking study was carried out which revealed that compound 3b showed stronger binding interaction with COX-2 as compared to COX-1.  相似文献   

12.
A new series, 2-substituted mercapto-3-[2-(pyridin-2-yl)ethyl]-4(3H)-quinazolinone 121, was synthesized and evaluated for in vivo anti-inflammatory and analgesic activities and in vitro COX-1/COX-2 inhibition. Compounds 1, 4, 5, 6, 8, 10, 13, 14, 15, 16, and 17 exhibited potent anti-inflammatory and analgesic properties, with ED50 values of 50.3–112.1 mg/kg and 12.3–111.3 mg/kg, respectively. These values may be compared with those of diclofenac sodium (ED50 = 112.2 and 100.4 mg/kg) and celecoxib (ED50 = 84.3 and 71.6 mg/kg). Compounds 4 and 6 possessed strong COX-2 inhibitory activity with IC50 (0.33 μM and 0.40 μM, respectively) and selectivity index (SI > 303.0 and >250.0, respectively) values that are similar to those of the reference drug celecoxib (IC50 0.30 μM and COX-2 SI > 333). Compounds 5, 8, and 13 demonstrated effective COX-2 inhibitory activity with IC50 values of 0.70–0.80 μM and COX-2 SI > 125–142. Potent COX-2 inhibitors, such as compounds 4, 6, and 13, were docked into the active site pockets of COX-1 and COX-2, with the greatest recognition occurring at the COX-2 binding site and insignificant interactions at the binding site of the COX-1 pocket.  相似文献   

13.
Jafari-Sabet M 《Life sciences》2011,88(25-26):1136-1141
AimsIn the present study, the effects of bilateral intra-dorsal hippocampal (intra-CA1) injections of cholinergic agents on muscimol state-dependent memory were examined in mice.Main methodsA single-trial step-down passive avoidance task was used for the assessment of memory retention in adult male NMRI mice.Key findingsPre-training intra-CA1 administration of a GABA-A receptor agonist, muscimol (0.05 and 0.1 μg/mouse) dose dependently induced impairment of memory retention. Pre-test injection of muscimol (0.05 and 0.1 μg/mouse, intra-CA1) induced state-dependent retrieval of the memory acquired under pre-training muscimol (0.1 μg/mouse, intra-CA1) influence. Pre-test intra-CA1 injection of an acetylcholinesterase inhibitor, physostigmine (0.5 and 1 μg/mouse, intra-CA1) reversed the memory impairment induced by pre-training administration of muscimol (0.1 μg/mouse, intra-CA1). Moreover, pre-test administration of physostigmine (0.5 and 1 μg/mouse, intra-CA1) with an ineffective dose of muscimol (0.025 μg/mouse, intra-CA1) significantly restored the retrieval and induced muscimol state-dependent memory. Pre-test intra-CA1 administration of physostigmine (0.25, 0.5 and 1 μg/mouse) by itself cannot affect memory retention. Pre-test intra-CA1 injection of the muscarinic receptor antagonist, atropine (1 and 2 μg/mouse) 5 min before the administration of muscimol (0.1 μg/mouse, intra-CA1) dose dependently inhibited muscimol state-dependent memory. Pre-test intra-CA1 administration of atropine (0.5, 1 and 2 μg/mouse) by itself cannot affect memory retention.SignificanceThe results suggest that muscarinic cholinergic mechanism of the CA1 may influence muscimol state-dependent memory.  相似文献   

14.
Iwuchukwu OF  Tallarida RJ  Nagar S 《Life sciences》2011,88(23-24):1047-1054
AimsThe only FDA approved medication for colorectal cancer (CRC) prevention is celecoxib. Its adverse effects underline the need for safer drugs. Polyphenols like resveratrol are in clinical trials for this purpose. This study aimed at examining effects of resveratrol alone and in combination with curcumin or chrysin on UGT induction in Caco-2 cells. Phytochemical combinations were selected using drug combination analyses of various anti-proliferation ratios of resveratrol + curcumin and resveratrol + chrysin.Main methodsCell proliferation and UGT1A1 induction assays were carried out with individual polyphenols and combinations. Cell viability was determined with AlamarBlue assays. UGT1A1 mRNA was quantified via real time RT-PCR. UGT activity was determined with 4-methylumbelliferone (4MU) glucuronidation.Key findingsCell proliferation IC50 estimates (± SE) for resveratrol, curcumin and chrysin were 20.8 ± 1.2, 20.1 ± 1.1 and 16.3 ± 1.3 μM respectively. Combination of anti-proliferative effects showed additivity for resveratrol + chrysin and resveratrol + curcumin. Resveratrol at its IC50 mediated a four-fold induction of UGT1A1 mRNA in a concentration independent manner. Chrysin at its IC50 induced UGT1A1 expression seven-fold while Curcumin at its IC90 mediated a two-fold induction. The 20 μM:40 μM resveratrol + curcumin and 20 μM :32 μM resveratrol + chrysin combinations mediated the greatest increases in mRNA expression (12 and 22 folds respectively). Significant increase in 4-MU glucuronidation was observed with combinations exhibiting maximal mRNA induction.SignificancePhytochemical combinations can offer greater chemoprevention than single agents. These chemicals might offer safer options than present synthetic therapeutics for CRC prevention.  相似文献   

15.
AimsTransient ischemia of osteoporotic bones during elective orthopedic surgery or fracture repair carries risks for serious complications, and estrogen loss or replacement has a potential to influence ischemia–reperfusion-induced inflammatory activation. To clarify this, we investigated the periosteal inflammatory changes in a clinically relevant time frame in ovariectomized rats, an experimental model of postmenopausal bone loss. Furthermore, the effects of chronic estrogen supplementation on the postischemic local and systemic inflammatory reactions were assessed.Main methodsBilateral ovariectomy or sham operation was performed in 3-month-old female Sprague–Dawley rats. Five months later, estrogen replacement therapy with 17β-estradiol (20 μg? 1 kg? 1 day? 1) or vehicle treatment was initiated. The microcirculatory inflammatory consequences of 60-min total hindlimb ischemia followed by 180-min reperfusion were examined 11 months after ovariectomy and were compared with those in 3-month-old animals.Key findingsThe osteoporosis that developed 5 months after ovariectomy was significantly ameliorated by estrogen replacement therapy. Both in ovariectomized and in non-ovariectomized animals, ischemia–reperfusion elevated the neutrophil adherence ~ 3-fold in the postcapillary venules of the periosteum (intravital microscopy), with an ~ 50–60% increase in intravascular neutrophil activation (CD11b; FACS analysis), an enhanced TNF-α release (ELISA) and periosteal expression of ICAM-1 (the endothelial ligand of CD11b; immunohistochemistry). Exogenous 17β-estradiol considerably reduced TNF-α release and the number of neutrophil–endothelial interactions in the periosteum, without affecting the CD11b and ICAM-1 expression changes.SignificanceOsteoporosis itself does not increase the magnitude of the limb ischemia–reperfusion-associated periosteal inflammatory reaction. Chronic estrogen supplementation, however, reverses osteoporosis and significantly ameliorates the microcirculatory consequences of transient ischemia.  相似文献   

16.
AimThis study examines if injection of cobalt chloride (CoCl2) or antagonists of muscarinic cholinergic (atropine), μ1-opioid (naloxonazine) or 5-HT1 serotonergic (methiothepin) receptors into the dorsal or ventral portions of the anterior pretectal nucleus (APtN) alters the antinociceptive effects of stimulating the retrosplenial cortex (RSC) in rats.Main methodChanges in the nociceptive threshold were evaluated using the tail flick or incision pain tests in rats that were electrically stimulated at the RSC after the injection of saline, CoCl2 (1 mM, 0.10 μL) or antagonists into the dorsal or ventral APtN.Key findingsThe injection of CoCl2, naloxonazine (5 μg/0.10 μL) or methiothepin (3 μg/0.10 μL) into the dorsal APtN reduced the stimulation-produced antinociception from the RSC in the rat tail flick test. Reduction of incision pain was observed following stimulation of the RSC after the injection of the same substances into the ventral APtN. The injection of atropine (10 ng/0.10 μL) or ketanserine (5 μg/0.10 μL) into the dorsal or ventral APtN was ineffective against the antinociception resulting from RSC stimulation.Significanceμ1-opioid- and 5-HT1-expressing neurons and cell processes in dorsal and ventral APtN are both implicated in the mediation of stimulation-produced antinociception from the RSC in the rat tail flick and incision pain tests, respectively.  相似文献   

17.
PC407 is an effective COX-2 inhibitor in non-steroidal anti-inflammatory drug development but the poor solubility limits their usefulness. The aim of the study was to prepare and evaluate 4-oxo-4-[4-(5-(naphthalen-2-yl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamido]butyrate disodium, a derivative of PC407 with enhanced water solubility for injectable formulation. The prepared derivative displayed interesting high aqueous solubility (20.3 mg/mL, much superior to the parent compound PC407, 1.6 μg/mL) with confirmed in vivo analgesic activity. This derivative represents the profiles of prodrug and potential candidate of PC407 for the development of injectable COX-2 inhibitor due to extraordinary water solubility, low toxicity, and impressive analgesic activity.  相似文献   

18.
AimsWhile β2-adrenoceptor (AR) agonists are useful bronchodilators, they also produce cardiac arrhythmias. These agents are not fully selective and also activate β1-AR, but the involvement of β1-AR and β2-AR in the observed pro-arrhythmic effect has not been established. We studied the effect of β1-AR and β2-AR activation on ventricular automaticity and the role of phosphodiesterases (PDE) in regulating this effect.Main methodsExperiments were performed in the spontaneously beating isolated right ventricle of the rat heart. We also measured cAMP production in this tissue.Key findingsThe β2-AR agonist salbutamol (1-100 μM) produced a concentration-dependent increase in ventricular automaticity that was not affected by 50 nM of the β2-AR antagonist ICI 118551. This effect was enhanced by the non-selective PDE inhibitor theophylline (100 μM) and by the selective PDE4 inhibitors rolipram (1 μM) and Ro 201724 (2 μM), but not modified by the selective PDE3 inhibitors cilostamide (0.3 μM) or milrinone (0.2 μM). The effects of salbutamol alone and in the presence of either theophylline or rolipram were virtually abolished by 0.1 μM β1-AR antagonist CGP20712A. Salbutamol (10 μM) increased the cAMP concentration, and this effect was abolished by CGP 20712A (0.1 μM) but enhanced by theophylline (100 μM) or rolipram (1 μM). Cilostamide (0.3 μM) failed to modify the effect of salbutamol on cAMP concentration.SignificanceThese results indicate that the increase of ventricular automaticity elicited by salbutamol was exclusively mediated through β1-AR and enhanced by non-selective PDE inhibition with theophylline or selective PDE4 inhibition. However, PDE3 did not appear to regulate this effect.  相似文献   

19.
Hwang I  Yoon T  Kim C  Cho B  Lee S  Song MK 《Life sciences》2011,88(5-6):278-284
AimsThis study was to determine the effects of zinc plus arachidonic acid (ZA) treatment on the insulin action in the specific ZA target organs using hyperinsulinemic euglycemic clamp method.Main methods18 Sprague–Dawley rats weighing ~ 130 g were divided into 3 groups of 6 rats and treated them with 1) normal rat chow, 2) high fructose (60.0%) diet only, or 3) the same fructose diet plus drinking water containing 10 mg zinc plus 50 mg arachidonic acid (AA)/L. In a separate study, male Wistar rats weighing ~ 250 g were fed normal rat chow (n = 4) or high fat (66.5%) diet with drinking water containing zero (n = 9) or 10 mg AA plus 20 mg zinc /L (n = 9). After 4 week treatment, insulin action was assessed using the hyperinsulinemic eguglycemic clamp technique.Key findingsHigh fructose feeding impaired suppression of hepatic glucose output by insulin compared to controls during the clamp procedure (4.39 vs. 2.35 mg/kg/min; p < 0.05). However, ZA treatment in high fructose-fed rats showed a significant improvement of hepatic insulin sensitivity compared to non-treatment controls (4.39 vs. 2.18 mg/kg/min; p < 0.05). Glucose infusion rates in Wistar rats maintained on a high fat diet (HFD) were significantly lower compared to control rats (22.8 ± 1.3 vs. 31.9 ± 1.4 mg/kg/min; p < 0.05). ZA treatment significantly improved (~ 43%) peripheral tissue insulin sensitivity in HFD fed animals (26.7 ± 1.3 [n = 9] vs. 22.8 ± 1.3 mg/kg/min; p < 0.05).SignificanceThese data demonstrate that ZA treatment is effective in improving glucose utilization in hyperglycemic rats receiving either a high-fructose or a high-fat diet.  相似文献   

20.
Maurya AN  Deshpande SB 《Life sciences》2011,88(19-20):886-891
AimsThe present study was undertaken to evaluate the role of nitric oxide (NO) in Mesobuthus tamulus (MBT) venom-induced depression of spinal reflexes.Main methodsExperiments were performed on isolated hemisected spinal cords from 4 to 6 day old rats. Stimulation of a dorsal root with supramaximal strength evoked monosynaptic (MSR) and polysynaptic reflex (PSR) potentials in the corresponding segmental ventral root.Key findingsSuperfusion of MBT venom (0.3 μg/ml) depressed the spinal reflexes in a time-dependent manner and the maximum depression was seen at 10 min (MSR by 63%; PSR by 79%). The time to produce 50% depression (T-50) of MSR and PSR was 7.7 ± 1.3 and 5.7 ± 0.5 min, respectively. Pretreatment with bicuculline (1 μM; GABAA receptor antagonist) or strychnine (1 μM; glycineA receptor antagonist) did not block the venom-induced depression of spinal reflexes. However, Nω-nitro-L-arginine methyl ester (L-NAME, 100 or 300 μM; NO synthase inhibitor) or hemoglobin (Hb, 100 μM; NO scavenger) antagonized the venom-induced depression of MSR. Further, soluble guanylyl cylase inhibitors (1 H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one, ODQ; 1 μM or methylene blue, 100 μM) also antagonized the venom-induced depression of MSR but not PSR. Nitrite concentration (indicator of NO activity) of the cords exposed to venom (0.3 μg/ml) was not different from the control group.SignificanceThe results indicate that venom-induced depression of MSR is mediated via NO-guanylyl cyclase pathway without involving GABAergic or glycinergic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号