首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Heme oxygenase is an essential enzyme in the heme catabolism that produces carbon monoxide (CO). This study was designed to examine the expression of two heme oxygenase isozyme mRNAs in the human brain and to explore the involvement of nitric oxide (NO) and various neuropeptides in the regulation of their expression. Northern blot analysis showed the expression of heme oxygenase-1 and heme oxygenase-2 mRNAs in every region of the brain examined, with the highest levels found in the frontal cortex, temporal cortex, occipital cortex, and hypothalamus. In a human glioblastoma cell line, T98G, treatment with any of three types of NO donors—sodium nitroprusside, 3-morpholinosydnonimine, and S -nitroso- l -glutathione—caused a significant increase in the levels of heme oxygenase-1 mRNA but not in the levels of heme oxygenase-2 and heat-shock protein 70 mRNAs. Sodium nitroprusside increased the levels of heme oxygenase-1 protein but not the levels of heat-shock protein 70 in T98G cells. The increase in content of heme oxygenase-1 mRNA caused by sodium nitroprusside was completely abolished by the treatment with actinomycin D. On the other hand, the levels of heme oxygenase isozyme mRNAs were not noticeably changed in T98G cells following the treatment with 8-bromo cyclic GMP, sodium nitrite, or various neuropeptides, such as calcitonin gene-related peptide, endothelin-1, and corticotropin-releasing hormone. The present study has shown the expression profiles of heme oxygenase-1 and -2 mRNAs in the human brain and the induction of heme oxygenase-1 mRNA caused by NO donors in T98G cells. These findings raise a possibility that the CO/heme oxygenase system may function in concert with the NO/NO synthase system in the brain.  相似文献   

2.
Heme oxygenase 1 overexpression increases iron fluxes in caco-2 cells   总被引:2,自引:0,他引:2  
Heme oxygenase-1 is a microsomal enzyme that, when induced by stress, protects the cells from oxidative injury. Heme oxygenase-1 participates in the cleavage of the heme ring producing biliverdin, CO and ferrous Fe. The released Fe becomes part of intracellular Fe pool and can be stored in ferritin or released by an iron exporter. The mechanism by which heme enters cells is not completely understood, although it had been suggested that it might be internalized by an endocytosis process. In this study, we expressed a full-length Heme oxygenase-1 cDNA in Caco-2 cells and measured intracellular iron content, heme-iron uptake and transport and immunolocalization of heme oxygenase-1 in these cells. We found that heme oxygenasc-1 expressing cells showed increased apical heme iron uptake and transepithelial transport when compared to control cells. These results suggested that heme oxygenase-1 mediates heme iron influx and efflux in intestinal cells.  相似文献   

3.
Beyond its vasodilator role, vascular nitric oxide (NO), which is synthesized by endothelial NO synthase (eNOS) via its activation, has been shown to play a number of other beneficial roles in the vascular system; it inhibits proliferation of vascular smooth muscle cells, prevents platelet aggregation, and regulates endothelial apoptosis. Such beneficial roles have been shown to be implicated in the regulation of endothelial functions. A loss of NO bioavailability that may result either from decreased eNOS expression and activity or from increased NO degradation is associated with endothelial dysfunction, a key factor in the development of vascular diseases. Heme oxygenase-1 (HO-1), an inducible enzyme, catalyzes the oxidative degradation of heme to free iron, carbon monoxide, and biliverdin, the latter being subsequently converted into bilirubin. In the vascular system, HO-1 and heme degradation products perform important physiological functions, which are ultimately linked to the protection of vascular cells. Studies have shown that HO-1 and heme degradation products exert vasodilatory, antioxidant, anti-inflammatory, antiproliferative and anti-apoptotic effects on vascular cells. Interestingly, these effects of HO-1 and its by-products are similar, at least in part, to those of eNOS-derived NO; this similarity may prompt investigators to study a possible relationship between eNOS-derived NO and HO-1 pathways. Many studies have been reported, and accumulating evidence suggests that HO-1 and heme degradation products can improve vascular function, at least in part, by compensating for the loss of NO bioavailability. This paper will provide the possible pathway explaining how HO-1 and heme degradation products can preserve vascular NO.  相似文献   

4.
Flavonoids, such as the tea catechin epigallocatechin-gallate (EGCG), can protect against atherosclerosis by decreasing vascular endothelial cell inflammation. Heme oxygenase-1 (HO-1) is an enzyme that plays an important role in vascular physiology, and its induction may provide protection against atherosclerosis. Heme oxygenase-1 can be compartmentalized in caveolae in endothelial cells. Caveolae are plasma microdomains important in vesicular transport and the regulation of signaling pathways associated with the pathology of vascular diseases. We hypothesize that caveolae play a role in the uptake and transport of EGCG and mechanisms associated with the anti-inflammatory properties of this flavonoid. To test this hypothesis, we explored the effect of EGCG on the induction of NF-E2-related factor (Nrf2) and HO-1 in endothelial cells with or without functional caveolae. Treatment with EGCG activated Nrf2 and increased HO-1 expression and cellular production of bilirubin. In addition, EGCG rapidly accumulated in caveolae, which was associated with caveolin-1 displacement from the plasma membrane towards the cytosol. Similar to EGCG treatment, silencing of caveolin-1 by siRNA technique also resulted in up-regulation of Nrf2, HO-1 and bilirubin production. These data suggest that EGCG-induced caveolin-1 displacement may reduce endothelial inflammation.  相似文献   

5.
Heme oxygenase-1 can play a protective role against cellular stress. In colon cancer cells, these effects would be relevant to oncogenesis and resistance to chemotherapy. The aim of the study was to examine the effects of heme oxygenase-1 induction on cell survival in a human colon cancer cell line, Caco-2. Serum deprivation induced apoptosis, reduced Akt and p38 phosphorylation, and increased p21(Cip/WAF1) levels. Heme oxygenase-1 induction by treatment with cobalt protoporphyrin IX resulted in resistance to apoptosis, activation of Akt, reduction in p21(Cip/WAF1) levels and modification of bcl2/bax ratio towards survival. Indomethacin reduced apoptosis but in contrast to heme oxygenase-1, arrested cells in G0/G1. Apoptosis was also inhibited by the heme oxygenase metabolites bilirubin and biliverdin but the CO donor tricarbonyldichlororuthenium(II) dimer did not exert significant effects. Protection against apoptosis in cells treated with cobalt protoporphyrin IX was reverted by incubation with heme oxygenase-1 small interfering RNA. This study shows an antiapoptotic effect of heme oxygenase-1 in colon cancer cells which could be mediated by the formation of bilirubin and biliverdin. Our results support an antiapoptotic role for HO-1 in these cells and provide a mechanism by which overexpression of HO-1 may promote tumor resistance to stress in conditions of limited nutrient supply. We have extended these observations by demonstrating that these effects are independent of p38 but are mediated via Akt pathway.  相似文献   

6.
7.
BACKGROUND: Skin injury leads to the release of heme, a potent prooxidant which is degraded by heme oxygenase-1 (HO-1) to carbon monoxide, iron, and biliverdin, subsequently reduced to bilirubin. Recently the involvement of HO-1 in angiogenesis has been shown; however, the role of heme and HO-1 in wound healing angiogenesis has not been yet investigated. RESULTS: Treatment of HaCaT keratinocytes with hemin (heme chloride) induced HO-1 expression and activity. The effect of heme on vascular endothelial growth factor (VEGF) synthesis is variable: induction is significant after a short, 6 h treatment with heme, while longer stimulation may attenuate its production. The involvement of HO-1 in VEGF synthesis was confirmed by inhibition of VEGF expression by SnPPIX, a blocker of HO activity and by attenuation of HO-1 mRNA expression with specific siRNA. Importantly, induction of HO-1 by hemin was able to overcome the inhibitory effect of high glucose on VEGF synthesis. Moreover, HO-1 expression was also induced in keratinocytes cultured in hypoxia, with concomitant augmentation of VEGF production, which was further potentiated by hemin stimulation. Accordingly, conditioned media from keratinocytes overexpressing HO-1 enhanced endothelial cell proliferation and augmented formation of capillaries in angiogenic assay in vitro. CONCLUSIONS: HO-1 is involved in hemin-induced VEGF expression in HaCaT and may play a role in hypoxic regulation of this protein. HO-1 overexpression may be beneficial in restoring the proper synthesis of VEGF disturbed in diabetic conditions.  相似文献   

8.
Heme oxygenase is a rate-limiting enzyme in heme catabolism that cleaves heme to form biliverdin, carbon monoxide, and iron. Heme oxygenase-1 is an inducible isozyme and is expressed in many types of cells and tissues. Large amounts of these heme degradation products may be noxious to the host, especially in the brain. We therefore searched for the factors that suppress the expression of heme oxygenase-1. Northern blot analysis showed that treatment with interferon-gamma and with interleukin-1beta for 24 h decreased the expression levels of heme oxygenase-1 mRNA to approximately 20 and approximately 50% of the control levels, respectively, in a human glioblastoma cell line, T98G. Treatment with a combination of these two cytokines additively decreased the expression levels of heme oxygenase-1 mRNA. Western blot analysis showed that the expression level of heme oxygenase-1 protein was also decreased by treatment with interferon-gamma, but not with interleukin-1beta. Moreover, pretreatment with interferon-gamma partially suppressed the induction of heme oxygenase-1 mRNA expression caused by either sodium nitroprusside, cadmium, or hemin. These findings raise the possibility that the expression of heme oxygenase-1 is down-regulated by interferon-gamma in the nervous system.  相似文献   

9.
Heme oxygenase consists of two structurally related isozymes, heme oxygenase-1 and and heme oxygenase-2, each of which cleaves heme to form biliverdin, iron and carbon monoxide. Expression of heme oxygenase-1 is increased or decreased depending on cellular microenvironments, whereas little is known about the regulation of heme oxygenase-2 expression. Here we show that hypoxia (1% oxygen) reduces the expression levels of heme oxygenase-2 mRNA and protein after 48 h of incubation in human cell lines, including Jurkat T-lymphocytes, YN-1 and K562 erythroleukemia, HeLa cervical cancer, and HepG2 hepatoma, as judged by northern blot and western blot analyses. In contrast, the expression level of heme oxygenase-1 mRNA varies under hypoxia, depending on the cell line; it was increased in YN-1 cells, decreased in HeLa and HepG2 cells, and remained undetectable in Jurkat and K562 cells. Moreover, heme oxygenase-1 protein was decreased in YN-1 cells under the conditions used, despite the induction of heme oxygenase-1 mRNA under hypoxia. The heme oxygenase activity was significantly decreased in YN-1, K562 and HepG2 cells after 48 h of hypoxia. To explore the mechanism for the hypoxia-mediated reduction of heme oxygenase-2 expression, we showed that hypoxia shortened the half-life of heme oxygenase-2 mRNA (from 12 h to 6 h) in YN-1 cells, without affecting the half-life of heme oxygenase-1 mRNA (9.5 h). Importantly, the heme contents were increased in YN-1, HepG2 and HeLa cells after 48 h of incubation under hypoxia. Thus, the reduced expression of heme oxygenase-2 may represent an important adaptation to hypoxia in certain cell types, which may contribute to the maintenance of the intracellular heme level.  相似文献   

10.
Heme oxygenase-1 is a highly inducible gene, the product of which catalyzes breakdown of the prooxidant heme. The purpose of this study was to investigate the regulation of the human heme oxygenase-1 gene in renal epithelial cells. DNase I hyper-sensitivity studies identified three distal sites (HS-2, -3, and -4) corresponding to approximately -4.0, -7.2, and -9.2 kb, respectively, of the heme oxygenase-1 promoter in addition to one proximal region, HS-1, which we have shown previously to be an E box. In vivo dimethyl sulfate footprinting of the HS-2 region revealed six individual protected guanines. Two mutations within HS-2 combined with a third mutation of the proximal E box abolished hemin- and cadmium-driven heme oxygenase-1 promoter activation, suggesting that these three sites synergized for maximal heme oxygenase-1 induction. Jun proteins bound to the antioxidant response element in the HS-2 region in vitro and associated with the heme oxygenase-1 promoter in vivo. JunB and JunD contribute opposing effects; JunB activated whereas JunD repressed heme oxygenase-1 expression in human renal epithelial cells, results that were corroborated in junB(-)(/)(-) and junD(-)(/)(-) cells. We propose that heme oxygenase-1 induction is controlled by a dynamic interplay of regulatory proteins, and we provide new insights into the molecular control of the human heme oxygenase-1 gene.  相似文献   

11.
Heme oxygenase-1 is the heme catabolic enzyme induced in human dermal fibroblasts by environmental stress. We report an increase of heme oxygenase-1 message in lens epithelial cells after exposure to UVA radiation, followed by a 10-fold increase of protein expression. The size of message was larger than previously demonstrated for fibroblasts. The relationship between heme oxygenase-1 activation and iron metabolism was investigated by measurement of activities of both cytosolic and mitochondrial cis-aconitase enzymes. A 2-fold increase in mitochondrial cis-aconitase activity in UVA-exposed cells coincided with the time of maximal heme oxygenase-1 expression. We propose that modulation of cis-aconitase activity at the translational level by an increase of cellular iron is an important consequence of heme oxygenase-1 activation. This might be a novel aspect of the protective role of heme oxygenase-1 in modulating the response of cells challenged with oxidative stress.  相似文献   

12.
Heme oxygenase-1, an inducible heat shock protein, is upregulated by oxidative stress, and its expression is modulated by proinflammatory cytokines such as IL-1 and IL-6. In the present study, we investigated the effects of postlesional, orally applied ebselen, a neuroprotective antioxidant, on serum levels of IL-6 and cerebral heme oxygenase-1 expression following focal ischemia induced by photothrombosis. Ebselen (50 mg/kg body weight) was given 30 min postlesion to male Wistar rats. Animals were divided into four groups: sham-operated vehicle control (n = 9), sham-operated ebselen control (n = 8), lesioned vehicle control (n = 14), and lesioned ebselen-treated (n = 17). Ebselen treatment resulted in a significant lowering of IL-6 plasma levels (26 +/- 5 pg/ml) as compared with that seen in lesioned vehicle controls (48 +/- 9 pg/ml) at 24 h postlesion. In sham-operated rats IL-6 was not detectable. Heme oxygenase-1-positive glial cells were quantitated within topographically determined perilesional brain regions. Within the 0.5-mm-wide rim region directly associated with the lesion core, no differences in the amount of heme oxygenase-1-positive glial cells were found. However, in the more remote ipsilateral perilesional cortex, significantly fewer heme oxygenase-1-positive glial cells were present within the supragranular cortical layers of lesioned ebselen-treated rats compared to lesioned vehicle controls (P < 0.001). In sham-operated rats, no glial heme oxygenase-1 induction occurred. The results indicate that postlesional ebselen treatment lowered plasma IL-6 levels subsequent to a photothrombotic lesion concomitant with a lowering of the heme oxygenase-1 response in glial cells.  相似文献   

13.
Vascular endothelial growth factor (VEGF) has been shown to promote neovascularization in animal models and, more recently, in human subjects. This feature has been assumed to result exclusively from its direct effects on fully differentiated endothelial cells, i.e. angiogenesis. Given its regulatory role in both angiogenesis and vasculogenesis during fetal development, we investigated the hypothesis that VEGF may modulate endothelial progenitor cell (EPC) kinetics for postnatal neovascularization. Indeed, we observed an increase in circulating EPCs following VEGF administration in vivo. VEGF-induced mobilization of bone marrow-derived EPCs resulted in increased differentiated EPCs in vitro and augmented corneal neovascularization in vivo. These findings thus establish a novel role for VEGF in postnatal neovascularization which complements its known impact on angiogenesis.  相似文献   

14.
S-adenosyl methionine (SAM) is a key intermediate in the metabolism of sulfur amino acids and is a major methyl donor in the cell. Although the low plasma level of SAM has been associated with atherosclerosis, the effect of SAM administration on atherosclerosis is not known. Endothelial dysfunction is an early prerequisite for atherosclerosis. This study was undertaken to investigate the possible preventive effect of SAM on endothelial dysfunction and the molecular mechanism of its action. SAM treatment prevented endothelial dysfunction in high fat diet (HFD)-fed rats. In cultured human aortic endothelial cells, linoleic acid (LA) increased and SAM decreased cell apoptosis and endoplasmic reticulum stress. Both LA and SAM increased heme oxygenase-1 (HO-1) expression in an NF-E2-related factor 2-dependent manner. However, knockdown of HO-1 reversed only the SAM-induced preventive effect of cell apoptosis. The LA-induced HO-1 expression was dependent on PPARα, whereas SAM induced HO-1 in a PPAR-independent manner. These data demonstrate that SAM treatment prevents endothelial dysfunction in HFDfed animals by inducing HO-1 in vascular endothelial cells. In cultured endothelial cells, SAM-induced HO-1 was responsible for the observed prevention of cell apoptosis. We propose that SAM treatment may represent a new therapeutic strategy for atherosclerosis.  相似文献   

15.
Several lines of evidence suggest that antioxidant processes and (or) endogenous antioxidants inhibit proatherogenic events in the blood vessel wall. Heme oxygenase (HO), which catabolizes heme to biliverdin, carbon monoxide, and catalytic iron, has been shown to have such antioxidative properties. The HO-1 isoform of heme oxygenase is ubiquitous and can be increased several fold by stimuli that induce cellular oxidative stress. Products of the HO reaction have important effects: carbon monoxide is a potent vasodilator, which is thought to play a role in modulation of vascular tone; biliverdin and its by-product bilirubin are potent antioxidants. Although HO induction results in an increase in catalytic free iron release, the enhancement of intracellular ferritin protein through HO-1 has been reported to decrease the cytotoxic effects of iron. Oxidized LDL has been shown to increase HO-1 expression in endothelial and smooth muscle cell cultures, and during atherogenesis. Further evidence of HO-1 expression associated with atherogenesis has been demonstrated in human, murine and rabbit atherosclerotic lesions. Moreover, genetic models of HO deficiency suggest that the actions of HO-1 are important in modulating the severity of atherosclerosis. Recent experiments in gene therapy using the HO gene suggest that interventions aimed at HO in the vessel wall could provide a novel therapeutic approach for the treatment or prevention of atherosclerotic disease.  相似文献   

16.
Heme oxygenase-1 (HO-1) is an essential enzyme in heme catabolism and is characterized by its inducibility in response to various environmental factors, including its substrate heme. The induction of HO-1 has been established as the defense mechanism against oxidative stress. However, striking interspecies or inter-tissue differences are noted in the regulation of HO-1 expression under hypoxia or heat shock, each of which represses HO-1 expression in many types of human cells but rather induces it in rodent cells. The downregulation of HO-1 expression may reduce energy expenditure and local production of carbon monoxide, iron, and bilirubin and transiently increase intracellular heme pool. Here, we discuss the repression of HO-1 expression as a potential defense strategy in humans by highlighting a regulatory role of HO-1 in its own expression.  相似文献   

17.
18.
Oxidative stress has been suggested to be involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer disease (AD) and Parkinson disease (PD). Heme oxygenase-1 (HO-1), a key enzyme in heme catabolism, also functions as an antioxidant enzyme. Here, we show that a (GT)n repeat in the human HO-1 gene promoter region is highly polymorphic, although no particular alleles are associated with AD or PD. This newly identified genetic marker should allow us to study the possible involvement of HO-1 in certain human diseases. Received: 5 November 1996 / Accepted: 18 February 1997  相似文献   

19.
Progenitor cells in vascular disease   总被引:8,自引:0,他引:8  
Stem cell research has the potential to provide solutions to many chronic diseases via the field of regeneration therapy. In vascular biology, endothelial progenitor cells (EPCs) have been identified as contributing to angiogenesis and hence have therapeutic potential to revascularise ischaemic tissues. EPCs have also been shown to endothelialise vascular grafts and therefore may contribute to endothelial maintenance. EPC number has been shown to be reduced in patients with cardiovascular disease, leading to speculation that atherosclerosis may be caused by a consumptive loss of endothelial repair capacity. Animal experiments have shown that EPCs reendothelialise injured vessels and that this reduces neointimal formation, confirming that EPCs have an atheroprotective effect. Smooth muscle cell accumulation in the neointimal space is characteristic of many forms of atherosclerosis, however the source of these cells is now thought to be from smooth muscle progenitor cells (SMPCs) rather than the adjacent media. There is evidence for the presence of SMPCs in the adventitia of animals and that SMPCs circulate in human blood. There is also data to support SMPCs contributing to neointimal formation but their origin remains unknown. This article will review the roles of EPCs and SMPCs in the development of vascular disease by examining experimental data from in vitro studies, animal models of atherosclerosis and clinical studies.  相似文献   

20.
Heme oxygenase-1 is an inducible cytoprotective gene, although its induction by environmental factors is not completely understood. This study aimed to ascertain if specific nutritive factors or related compounds influence heme oxygenase-1 expression. In HCT-116 cells, cadmium increased heme oxygenase-1 enzymatic activity. This effect of cadmium was weaker in cells made iron-deficient with the iron chelator, desferrioxamine, which was associated with repression of heme oxygenase-1 protein and mRNA expression. The repression by desferrioxamine of cadmium-induced heme oxygenase-1 upregulation was reversed upon iron replenishment of the cells. Additionally, it was found that thiol antioxidants inhibited the heme oxygenase-1 upregulation caused by cadmium and also by ethacrynic acid, which each decreased intracellular glutathione as did buthionine sulfoxamine. Interestingly, cadmium and ethacrynic acid increased nuclear translocation of Nrf2 and subsequent heme oxygenase-1 expression, but buthionine sulfoxamine did not. Furthermore, NADPH oxidase inhibitors (diphenyleneiodonium and apocynin, and a superoxide scavenger (Tiron) inhibited cadmium-induced upregulation of heme oxygenase-1. Diphenyleneiodonium was the most potent and inhibited NADPH-cytochrome P450 reductase as well, whereas apocynin and Tiron did not. It is concluded that adequate amounts of iron, which at the atomic level can serve as the pivotal element of heme in NADPH oxidase, must be present in cells to permit what appears to be thiol redox-sensitive, NADPH oxidase-dependent upregulation of heme oxygenase-1. Thus, these findings are significant because they suggest that cells without adequate iron would be unable to fully express the stress gene, heme oxygenase-1, when confronted with the toxic metal, cadmium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号