首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Capsaicin has been shown to evoke the release of substance P (SP) from small diameter primary afferent fibers. Using an in vivo perfusion of the rat spinal cord, this study examined the pharmacology of opioid receptor systems which modulate the capsaicin-evoked release of SP. The addition of capsaicin (200 μM) to the perfusate raised SP-like immunoreactivity (SP-LI) from resting levels of 31±5 to 74±14 pg/ml or an increase of 139% above the baseline. Using high pressure liquid chromatography (HPLC) the identity of the released SP-LI was determined to coelute primarily with authentic SP or the oxidized form of SP. Opioid receptor agonists were added to the perfusate and their ability to inhibit capsaicin-evoked release of SP-LI was assessed. Morphine (10–100 μM), DAGO (1–100 μM), DPLPE (10–100 μM), but not U50488H (100 μM) produced a dose-dependent reduction in the capsaicin-evoked release of SP-LI. Pretreatment with the opioid receptor antagonist naloxone (1 mg/kg, IP) had no effect on the basal or capsaicin-evoked release of SP-LI. Naloxone pretreatment was able to antagonize completely the opioid-produced inhibition of capsaicin-evoked SP-LI release. These data indicate that the release of SP from primary afferent fibers can be modulated by the activation of mu or delta but not kappa opioid receptors. Further, these data support the hypothesis that spinally administered mu and delta opioid agonists may produce their antinociceptive effect through the presynaptic inhibition of neuropeptide release from small diameter primary afferent fibers.  相似文献   

2.
3.
Opiate alkaloids and opioid peptides have been shown to suppress plasma LH and FSH levels via a naloxone sensitive mechanism in several species including man. Three subtypes of opiate receptors have been characterized: mu, delta and kappa. The present study was designed to investigate their role in gonadotropin release. Three highly selective opioid ligands, DAGO, MRZ and DTE12 (a dimeric tetrapeptide enkephalin), were injected intraventricularly into chronically ovariectomized rats. Injection of the mu-agonist at doses of 1 and 10 nmol produced a significant suppression of LH secretion, while the delta- and kappa-agonists had no significant effect. Thus, the mu-receptor seems to be the primary opiate receptor involved in the regulation of LH secretion. None of the opiate agonists employed had an effect on FSH secretion.  相似文献   

4.
M Jia  P G Nelson 《Peptides》1987,8(3):559-563
mu, delta and kappa opioid receptor agonists, morphiceptin, Leu-enkephalin and dynorphin reduced monosynaptic EPSPs evoked in spinal cord neurons by stimulation of spinal cord neurons in a mouse cell culture system. The incidence of the cell pairs which responded to morphiceptin, Leu-enkephalin and dynorphin was 3%, 63% and 37% respectively. Statistical analysis showed the effect of Leu-enkephalin was presynaptic. When tested with Leu-enkephalin and dynorphin, 6 cell pairs responded to both Leu-enkephalin and dynorphin, 5 cell pairs only responded to Leu-enkephalin, none of the cell pairs responded only to dynorphin (n = 18). It is suggested that some cells have only delta receptors, but kappa receptors coexist with delta receptors. Opiate receptors of the mu type are rare on SC neurons.  相似文献   

5.
The primary structure of the common precursor of porcine beta-neo-endorphin and dynorphin (preproenkephalin B) has shown the existence of a third leucine-enkephalin (leu-enkephalin) sequence with a C-terminal extension of 24 amino acids. This nonacosapeptide, named leumorphin, was approximately 70 times more potent than leu-enkephalin in inhibiting the contraction of the myenteric plexus-longitudinal muscle preparation of the guinea pig ileum. This action of leumorphin, like those of beta-neo-endorphin and dynorphin, was antagonized less effectively by naloxone than that of leu-enkephalin, but more effectively by Mr2266, an antagonist relatively specific for the kappa type opiate receptor. The inhibitory action of leumorphin or beta-neo-endorphin on the contraction of the guinea pig ileum muscle strip was reduced in a dose-dependent manner by pretreatment with dynorphin and vice versa. Leumorphin as well as beta-neo-endorphin and dynorphin inhibits the contraction of the rabbit vas deferens which is known to have only the kappa type opiate receptor. This action was also effectively antagonized by Mr2266. It is concluded that leumorphin has potent opioid activity and acts at the kappa receptor, like other opioid peptides derived from preproenkephalin B.  相似文献   

6.
Changes in functional responsiveness of spinal opioid receptors in monoarthritic rats were investigated at the behavioral and the molecular level. After intrathecal administration of morphine, D-Ala2-D-Leu5-enkephalin (DADLE), D-Pen2-D-Pen5-enkephalin (DPDPE) and dynorphin monoarthritic rats showed an enhanced antinociceptive response as measured by a tail-flick latency. No such changes were observed following administration of the selective kappa agonists U50,488H and U69,593. The opioid mu and delta receptor agonists (0.1-1.0 microM) inhibited the basal, as well as the forskolin-stimulated cAMP formation in spinal cord slices obtained from monoarthritic rats, whereas no significant changes were found in control animals. Higher concentrations of the mu and delta opioid receptor agonists were required to attenuate the cAMP level in spinal cord of control animals. The selective kappa agonists U50,488H and U69,593 did not influence the cAMP formation in monoarthritic or control animals. Additionally, we found that the GppNHp-stimulated level of cAMP was higher in the spinal cord slices of monoarthritic rats, which points to an enhanced responsiveness of the adenylate cyclase effector system to the action of this GTP analog. Our data suggest that the enhanced antinociceptive response to intrathecally administered opioids in monoarthritic rats may be connected with the increased sensitivity of adenylate cyclase to the inhibitory effects of mu and delta agonists.  相似文献   

7.
We analyzed intracellular Ca(2+)and cAMP levels in Chinese hamster ovary cells expressing a cloned rat kappa opioid receptor (CHO-kappa cells). Although expression of kappa(kappa)-opioid receptors was confirmed with a fluorescent dynorphin analog in almost all CHO-kappa cells, the kappa-specific agonists, U50488H or U69593, induced a Ca(2+) transient only in 35% of the cells. The Ca(2+) response occurred in all-or-none fashion and the half-maximal dosage of U50488H (812.1nM) was higher than that (3.2nM) to inhibit forskolin-stimulated cAMP. The kappa-receptors coupled to G(i/o)proteins since pertussis toxin significantly reduced the U50488H actions on intracellular Ca(2+) and cAMP. The Ca(2+) transient originates from IP(3)-sensitive internal stores since the Ca(2+) response was blocked by a PLC inhibitor (U73122) or by thapsigargin depletion of internal stores while removal of extracellular Ca(2+) had no effect. Interestingly, application of dibutyryl cAMP (+ 56.2%) or 8-bromo-cAMP (+ 174.7%) significantly increased the occurrence of U50488H-induced Ca(2+) mobilization while protein kinase A (PKA) inhibitors, Rp-cAMP (-32.3%) or myr-psi PKA (-73.9%) significantly reduced the response. Therefore, it was concluded that cAMP and PKA activity can regulate the Ca(2+) mobilization. These results suggest that the kappa receptor-linked cAMP cascade regulates the occurrence of kappa-opioid-mediated Ca(2+) mobilization.  相似文献   

8.
Smooth muscle cells were isolated from the fundus of the canine gallbladder and examined for the presence of opioid receptors. The cells contracted in a concentration-dependent manner in response to three opioid peptides (Met-enkephalin, dynorphin1-13 and Leu-enkephalin), which are known derivatives of opioid precursors present in myenteric neurons of the gut. The order of potency was Met-enkephalin greater than dynorphin1-13 greater than Leu-enkephalin. The contractile response to opioid agonists was selectively inhibited by opioid antagonists (naloxone and Mr2266) but not by muscarinic, CCK/gastrin or tachykinin antagonists. Equivalent responses to the three opioid peptides exhibited differential sensitivity to preferential antagonists of mu (naloxone) and kappa (Mr2266) opioid receptors consistent with the presence of the three main types of opioid receptors (mu, delta and kappa) on canine gallbladder muscle cells.  相似文献   

9.
Opioid agonists specific for the , , and opioid receptor subtypes were tested for their ability to modulate potassium-evoked release of L-glutamate and dynorphin B-like immunoreactivity from guinea pig hippocampal mossy fiber synaptosomes. The opioid agonists U-62,066E and (–) ethylketocyclazocine, but not the agonist [D-Ala2,N-MePhe4,Gly5-ol]-enkephalin (DAGO) nor the agonist [D-Pen2,5]enkephalin (DPDE), inhibited the potassium-evoked release of L-glutamate and dynorphin B-like immunoreactivity. U-62,066E, but not DAGO or DPDE, also inhibited the potassium-evoked rise in mossy fiber synaptosomal cytosolic Ca2+ levels, indicating a possible mechanism for agonist inhibition of transmitter release. DAGO and DPDE were found to be without any effect on cytosolic Ca2+ levels or transmitter release in this preparation. The U-62,066E inhibition of the potassium-evoked rise in synaptosomal cytosolic Ca2+ levels was partially attenuated by the opioid antagonist quadazocine and insensitive to the -opioid specific antagonist ICI 174,864 and the opioid-preferring antagonists naloxone and naltrexone. Quadazocine also reversed U-62,066E inhibition of the potassium-evoked release of L-glutamate, but not dynorphin B-like immunoreactivity. These results suggest that opioid agonists inhibit transmitter release from mossy fiber terminals through both opioid and non- opioid receptor mediated mechanisms.  相似文献   

10.
The peptide nociceptin/orphanin FQ (N/OFQ) and its receptor ORL-1, also designated opioid receptor 4 (OP(4)) are involved in the modulation of nociception. Using OP(4)-knockout mice, we have studied their response following opioid receptor stimulation and under neuropathic conditions.In vas deferens from wild-type and OP(4)-knockout mice, DAMGO (mu/OP(3) agonist), deltorphine II (delta/OP(1) agonist) and (-)-U-50488 (kappa/OP(2) agonist) induced similar concentration-dependent inhibition of electrically-evoked contractions. Naloxone and naltrindole (delta/OP(1) antagonists) shifted the curves of DAMGO (pA(2)=8.6) and deltorphine II (pA(2)=10.2) to the right, in each group. In the hot-plate assay, N/OFQ (10 nmol per mouse, i.t.) increased baseline latencies two-fold in wild-type mice while morphine (10mg/kg, s.c.), deltorphine II (10 nmol per mouse, i.c.v.) and dynorphin A (20 nmol per mouse, i.c.v.) increased hot-plate latencies by about four- to five-fold with no difference observed between wild-type and knockout mice. Furthermore, no change was evident in the development of the neuropathic condition due to chronic constriction injury (CCI) of the sciatic nerve, after both thermal and mechanical stimulation.Altogether these results suggest that the presence of OP(4) receptor is not crucial for (1) the development of either acute or neuropathic nociceptive responses, and for (2) the regulation of full receptor-mediated responses to opioid agonists, even though compensatory mechanisms could not be excluded.  相似文献   

11.
The nature of the opiate modulation of adenylate cyclase following acute and chronic agonist exposure has been investigated in rat spinal cord. Using membranes of both adult rat spinal cord and spinal cord-dorsal root ganglion cocultures, we found that kappa-opiate receptors are negatively coupled to adenylate cyclase. The kappa-opiate agonists (e.g., U50488) inhibit significantly and dose-dependently the basal and the forskolin-stimulated cyclase activities, whereas mu and delta agonists are ineffective. The regulatory action is stereospecific and requires the presence of GTP. EGTA treatment of the plasma membranes abolished the effect of kappa-opiate agonists on the basal cyclase activity, and this inhibitory effect could not be restored by subsequent addition of Ca2+. The EGTA treatment did not affect the kappa agonist inhibition of the forskolin-stimulated cyclase. The results also show that following chronic exposure of cultured cells to etorphine or U50488, there is a loss of kappa agonist inhibition of the cyclase. Moreover, this desensitization process appears to be heterologous, because alpha 2-adrenergic agonists (e.g., clonidine or norepinephrine) and the muscarinic agonist (carbachol) exhibited significantly lower potency for inhibiting cyclase activity when compared to untreated cultures. This pattern of heterologous desensitization suggests that chronic exposure to kappa opiates leads to alterations in postreceptor regulatory components, possibly GTP-binding proteins.  相似文献   

12.
L-DOPA-induced dyskinesia is a troublesome complication of L-DOPA pharmacotherapy of Parkinson's disease and has been associated with disturbed brain opioid transmission. However, so far the results of clinical and preclinical studies on the effects of opioids agonists and antagonists have been contradictory at best. Prodynorphin mRNA levels correlate well with the severity of dyskinesia in animal models of Parkinson's disease; however the identities of the actual neuroactive opioid effectors in their target basal ganglia output structures have not yet been determined. For the first time MALDI-TOF imaging mass spectrometry (IMS) was used for unbiased assessment and topographical elucidation of prodynorphin-derived peptides in the substantia nigra of a unilateral rat model of Parkinson's disease and L-DOPA induced dyskinesia. Nigral levels of dynorphin B and alpha-neoendorphin strongly correlated with the severity of dyskinesia. Even if dynorphin peptide levels were elevated in both the medial and lateral part of the substantia nigra, MALDI IMS analysis revealed that the most prominent changes were localized to the lateral part of the substantia nigra. MALDI IMS is advantageous compared with traditional molecular methods, such as radioimmunoassay, in that neither the molecular identity analyzed, nor the specific localization needs to be predetermined. Indeed, MALDI IMS revealed that the bioconverted metabolite leu-enkephalin-arg also correlated positively with severity of dyskinesia. Multiplexing DynB and leu-enkephalin-arg ion images revealed small (0.25 by 0.5 mm) nigral subregions with complementing ion intensities, indicating localized peptide release followed by bioconversion. The nigral dynorphins associated with L-DOPA-induced dyskinesia were not those with high affinity to kappa opioid receptors, but consisted of shorter peptides, mainly dynorphin B and alpha-neoendorphin that are known to bind and activate mu and delta opioid receptors. This suggests that mu and/or delta subtype-selective opioid receptor antagonists may be clinically relevant for reducing L-DOPA-induced dyskinesia in Parkinson's disease.  相似文献   

13.
The ability of neuropeptide Y to potently stimulate food intake is dependent in part upon the functioning of mu and kappa opioid receptors. The combined use of selective opioid antagonists directed against mu, delta or kappa receptors and antisense probes directed against specific exons of the MOR-1, DOR-1, KOR-1 and KOR-3/ORL-1 opioid receptor genes has been successful in characterizing the precise receptor subpopulations mediating feeding elicited by opioid peptides and agonists as well as homeostatic challenges. The present study examined the dose-dependent (5-80 nmol) cerebroventricular actions of general and selective mu, delta, and kappa1 opioid receptor antagonists together with antisense probes directed against each of the four exons of the MOR-1 opioid receptor gene and each of the three exons of the DOR-1, KOR-1, and KOR-3/ORL-1 opioid receptor genes upon feeding elicited by cerebroventricular NPY (0.47 nmol, 2 ug). NPY-induced feeding was dose-dependently decreased and sometimes eliminated following pretreatment with general, mu, delta, and kappa1 opioid receptor antagonists. Moreover, NPY-induced feeding was significantly and markedly reduced by antisense probes directed against exons 1, 2, and 3 of the MOR-1 gene, exons 1 and 2 of the DOR-1 gene, exons 1, 2, and 3 of the KOR-1 gene, and exon 3 of the KOR-3/ORL-1 gene. Thus, whereas the opioid peptides, beta-endorphin and dynorphin A(1-17) elicit feeding responses that are respectively more dependent upon mu and kappa opioid receptors and their genes, the opioid mediation of NPY-induced feeding appears to involve all three major opioid receptor subtypes in a manner similar to that observed for feeding responses following glucoprivation or lipoprivation.  相似文献   

14.
Opioid ligands were investigated for their effect on hCG release from trophoblast tissue obtained from term human placenta. Data obtained indicate that opiate agonists stimulate in vitro basal hCG release from trophoblast tissue. The potency of these opioid agonists correspond to their kappa receptor selectivity, i.e., the greater the selectivity the lower is the effective concentration causing maximum stimulation. Opioid antagonists inhibit the release of hCG due to their reversal of the stimulation caused by endogenous opioid peptides. Potency of the antagonists correspond also to their kappa receptor selectivity. Antagonists reverse the stimulation of hCG release caused by agonists indicating that the ligand's action is mediated by the placental kappa opioid receptors. The bell shaped response curves for agonists and antagonists suggest that opioids play a role in the regulation of hCG release from trophoblast tissue, but other mechanism(s) may also exist.  相似文献   

15.
Kisspeptin, neurokinin B (NKB) and dynorphin A (Dyn) are coexpressed within KNDy neurons that project from the hypothalamic arcuate nucleus (ARC) to GnRH neurons and numerous other hypothalamic targets. Each of the KNDy neuropeptides has been implicated in regulating pulsatile GnRH/LH secretion. In isolation, kisspeptin is generally known to stimulate, and Dyn to inhibit LH secretion. However, the NKB analog, senktide, has variously been reported to inhibit, stimulate or have no effect on LH secretion. In prepubertal mice, rats and monkeys, senktide stimulates LH secretion. Furthermore, in the monkey this effect is dependent on kisspeptin signaling through its receptor, GPR54. The present study tested the hypotheses that the stimulatory effects of NKB on LH secretion in intact rats are mediated by kisspeptin/GPR54 signaling and are independent of a Dyn tone. To test this, ovarian-intact prepubertal rats were subjected to frequent automated blood sampling before and after intracerebroventricular injections of KNDy neuropeptide analogs. Senktide robustly induced single LH pulses, while neither the GPR54 antagonist, Kp-234, nor the Dyn agonist and antagonist (U50488 and nor-BNI, respectively) had an effect on basal LH levels. However, Kp-234 potently blocked the senktide-induced LH pulses. Modulation of the Dyn tone by U50488 or nor-BNI did not affect the senktide-induced LH pulses. These data demonstrate that the stimulatory effect of NKB on LH secretion in intact female rats is dependent upon kisspeptin/GPR54 signaling, but not on Dyn signaling.  相似文献   

16.
Aldrich JV  Zheng QI  Murray TF 《Chirality》2001,13(3):125-129
Analogs of the opioid peptide [D-Ala8]dynorphin A-(1-11)NH2 containing optically pure (R)- and (S)-2-aminotetralin-2-carboxylic acid (Atc) in position 4 were synthesized and evaluated for opioid receptor affinity. These peptides are the first reported dynorphin A analogs containing a conformationally constrained amino acid in place of the important aromatic residue Phe4. By incorporating resolved Atc isomers, the opioid receptor affinity and the stereochemistry of the constrained residue could be unambiguously correlated. Both Dyn A analogs containing Atc in position 4 retained nanomolar affinity for kappa and mu opioid receptors. Unexpectedly the peptide containing (R)-Atc, corresponding to a conformationally constrained D-Phe analog, displaying higher affinity for both kappa and mu receptors than the peptide containing (S)-Atc. In contrast [D-Phe4,D-Ala8]Dyn A-(1-11)NH2 exhibited significantly lower affinity for kappa and mu receptors than the parent peptide, as expected. Conformational restriction of the Phe4 sidechain or incorporation of D-Phe in position 4 had the largest effect on delta receptor affinity, yielding compounds with negligible affinity for these receptors. Thus, there appear to be distinctly different structural requirements for this residue for kappa vs. delta receptors, and it is possible to completely distinguish between these two receptors by changing a single residue in Dyn A.  相似文献   

17.
S Iyengar  H S Kim  P L Wood 《Life sciences》1986,39(7):637-644
Four kappa opiate agonists, U-50488H, MR-2034, EKC and tifluadom, elevated plasma corticosterone and decreased plasma TSH in a dose-dependent manner. These effects were naloxone-reversible. However, WIN 44441-3, a long acting narcotic antagonist, was unable to reverse the effects of U-50488H and MR-2034 upto doses of 5 mg/kg. U-50488H and MR-2034 but not tifluadom or EKC, also increased levels of DOPAC and HVA in the olfactory tubercle. This effect was also naloxone-reversible but not WIN 44441-3 reversible. Tifluadom and EKC did not increase DOPAC and HVA. The differential responses of the tested kappa agonists to WIN 44441-3 antagonism and dopamine metabolism in A10 neurons suggest that the kappa agonists can be separated into two groups. This is the first physiological evidence suggestive of kappa opioid receptor subtypes.  相似文献   

18.
The aim of the present study has been to characterize the regulation by opiates of 45Ca2+ influx in rat spinal cord-dorsal root ganglion cocultures. We have demonstrated that K+-induced depolarization, in the presence of the Ca2+ channel agonist Bay K8644, stimulated Ca2+ influx (3-4-fold) via the dihydropyridine class of voltage-dependent Ca2+ channels. While mu and delta opiates had no effect, kappa opiate agonists (e.g. U50488, dynorphin) profoundly depressed the stimulated Ca2+ influx (86% inhibition at 100 microM U50488). The kappa agonist action was stereospecific and could be reversed by the opiate antagonist naloxone. The inhibition produced by kappa agonists was greatly diminished following pertussis toxin treatment, and this effect was accompanied by toxin-induced ADP-ribosylation of a 40-41-kDa protein. This suggests that kappa opiate receptors are negatively coupled to voltage-dependent Ca2+ channels, via a pertussis toxin-sensitive GTP-binding protein. Basal 45Ca2+ uptake, stimulated by adenylate cyclase activators (forskolin and cholera toxin), was potently inhibited by kappa opiates suggesting that, under conditions of neurohormonal stimulation of adenylate cyclase, kappa receptors are coupled to Ca2+ channels indirectly via the adenylate cyclase complex. In addition, cAMP-independent coupling pathways may also be involved.  相似文献   

19.
A ligand containing an SNpys group, i.e. 3-nitro-2-pyridinesulfenyl linked to a mercapto (or thiol) group, can bind covalently to a free mercapto group to form a disulfide bond via the thiol-disulfide exchange reaction. This SNpys chemistry has been successfully applied to the discriminative affinity labeling of mu and delta opioid receptors with SNpys-containing enkephalins [Yasunaga, T. et al. (1996) J. Biochem. 120, 459-465]. In order to explore the mercapto groups conserved at or near the ligand binding sites of three opioid receptor subtypes, we synthesized two Cys(Npys)-containing analogs of dynorphin A, namely, [D-Ala2, Cys(Npys)8]dynorphin A-(1-9) amide (1) and [D-Ala2, Cys(Npys)12]dynorphin A-(1-13) amide (2). When rat (mu and delta) or guinea pig (kappa) brain membranes were incubated with these Cys(Npys)-containing dynorphin A analogs and then assayed for inhibition of the binding of DAGO (mu), deltorphin II (delta), and U-69593 (kappa), the number of receptors decreased sharply, depending upon the concentrations of these Cys(Npys)-containing dynorphin A analogs. It was found that dynorphin A analogs 1 and 2 effectively label mu receptors (EC50 = 27-33 nM), but also label delta receptors fairly well (160-180 nM). However, for kappa receptors they showed drastically different potencies as to affinity labeling; i.e., EC50 = 210 nM for analog 1, but 10,000 nM for analog 2. Analog 2 labeled kappa receptors about 50 times more weakly than analog 1. These results suggested that dynorphin A analog 1 labels the Cys residues conserved in mu, delta, and kappa receptors, whereas analog 2 only labels the Cys residues conserved in mu and delta receptors.  相似文献   

20.
A series of 2-substituted sulfamoyl arylacetamides of general structure 2 were prepared as potent kappa opioid receptor agonists and the affinities of these compounds for opioid and chimeric receptors were compared with those of dynorphin A. Compounds 2e and 2i were identified as non-peptide small molecules that bound to chimeras 3 and 4 with high affinities similar to dynorphin A, resulting in K(i) values of 1.5 and 1.2 nM and 1.3 and 2.2 nM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号