首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The von Hippel-Lindau tumor suppressor protein   总被引:20,自引:0,他引:20  
  相似文献   

5.
6.
Functional inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene is the cause of the familial VHL disease and most sporadic renal clear-cell carcinomas (RCC). pVHL has been shown to play a role in the destruction of hypoxia-inducible factor alpha (HIF-alpha) subunits via ubiquitin-mediated proteolysis and in the regulation of fibronectin matrix assembly. Although most disease-causing pVHL mutations hinder the regulation of the HIF pathway, every disease-causing pVHL mutant tested to date has failed to promote the assembly of the fibronectin matrix, underscoring its potential importance in VHL disease. Here, we report that a ubiquitin-like molecule called NEDD8 covalently modifies pVHL. A nonneddylateable pVHL mutant, while retaining its ability to ubiquitylate HIF, failed to bind to and promote the assembly of the fibronectin matrix. Expression of the neddylation-defective pVHL in RCC cells, while restoring the regulation of HIF, failed to promote the differentiated morphology in a three-dimensional growth assay and was insufficient to suppress the formation of tumors in SCID mice. These results suggest that NEDD8 modification of pVHL plays an important role in fibronectin matrix assembly and that in the absence of such regulation, an intact HIF pathway is insufficient to prevent VHL-associated tumorigenesis.  相似文献   

7.
8.
9.
pVHL, the product of von Hippel-Lindau (VHL) tumor suppressor gene, functions as the substrate recognition component of an E3-ubiquitin ligase complex that targets hypoxia inducible factor α (HIF-α) for ubiquitination and degradation. Besides HIF-α, pVHL also interacts with other proteins and has multiple functions. Here, we report that pVHL inhibits ribosome biogenesis and protein synthesis. We find that pVHL associates with the 40S ribosomal protein S3 (RPS3) but does not target it for destruction. Rather, the pVHL-RPS3 association interferes with the interaction between RPS3 and RPS2. Expression of pVHL also leads to nuclear retention of pre-40S ribosomal subunits, diminishing polysomes and 18S rRNA levels. We also demonstrate that pVHL suppresses both cap-dependent and cap-independent protein synthesis. Our findings unravel a novel function of pVHL and provide insight into the regulation of ribosome biogenesis by the tumor suppressor pVHL.  相似文献   

10.
11.
Inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene is linked to the hereditary VHL disease and sporadic clear cell renal cell carcinomas (CCRCC). VHL-associated tumors are highly vascularized, a characteristic associated with overproduction of vascular endothelial growth factor (VEGF). The VHL protein (pVHL) is a component of the ubiquitin ligase E3 complex, targeting substrate proteins for ubiquitylation and subsequent proteasomic degradation. Here, we report that the pVHL can directly bind to the human RNA polymerase II seventh subunit (hsRPB7) through its beta-domain, and naturally occurring beta-domain mutations can decrease the binding of pVHL to hsRPB7. Introducing wild-type pVHL into human kidney tumor cell lines carrying endogenous mutant non-functional pVHL facilitates ubiquitylation and proteasomal degradation of hsRPB7, and decreases its nuclear accumulation. pVHL can also suppress hsRPB7-induced VEGF promoter transactivation, mRNA expression and VEGF protein secretion. Together, our results suggest that hsRPB7 is a downstream target of the VHL ubiquitylating complex and pVHL may regulate angiogenesis by targeting hsRPB7 for degradation via the ubiquitylation pathway and preventing VEGF expression.  相似文献   

12.
HIF hydroxylation and cellular oxygen sensing   总被引:7,自引:0,他引:7  
  相似文献   

13.
14.
15.
16.
17.
18.
The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit E3 ligase required for ubiquitin-dependent proteolysis of cell-cycle-regulatory proteins, including mitotic cyclins and securin/Pds1. Regulation of APC/C activity and substrate recognition, mediated by the coactivators Cdc20 and Cdh1, is fundamental to cell-cycle control. However, the precise mechanism by which coactivators stimulate APC/C ubiquitylation activity and the nature of the substrate-binding sites on the activated APC/C are not understood. Here, we show that the optimal interaction of substrate with APC/C is dependent specifically on the simultaneous association of coactivator. This is consistent with a model whereby both core APC/C subunits and coactivators contribute recognition sites for substrates, accounting for the bipartite nature (D and KEN boxes) of most APC/C degradation signals. A direct and stoichiometric function for the coactivators could explain how specific substrates are recognized by APC/C in a cell-cycle-specific manner, and how coactivator stimulates APC/C ubiquitylation activity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号