首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 369 毫秒
1.
2.
Prolyl hydroxylation of hypoxible-inducible factor alpha (HIF-alpha) proteins is essential for their recognition by pVHL containing ubiquitin ligase complexes and subsequent degradation in oxygen (O(2))-replete cells. Therefore, HIF prolyl hydroxylase (PHD) enzymatic activity is critical for the regulation of cellular responses to O(2) deprivation (hypoxia). Using a fusion protein containing the human HIF-1alpha O(2)-dependent degradation domain (ODD), we monitored PHD activity both in vivo and in cell-free systems. This novel assay allows the simultaneous detection of both hydroxylated and nonhydroxylated PHD substrates in cells and during in vitro reactions. Importantly, the ODD fusion protein is regulated with kinetics identical to endogenous HIF-1alpha during cellular hypoxia and reoxygenation. Using in vitro assays, we demonstrated that the levels of iron (Fe), ascorbate, and various tricarboxylic acid (TCA) cycle intermediates affect PHD activity. The intracellular levels of these factors also modulate PHD function and HIF-1alpha accumulation in vivo. Furthermore, cells treated with mitochondrial inhibitors, such as rotenone and myxothiazol, provided direct evidence that PHDs remain active in hypoxic cells lacking functional mitochondria. Our results suggest that multiple mitochondrial products, including TCA cycle intermediates and reactive oxygen species, can coordinate PHD activity, HIF stabilization, and cellular responses to O(2) depletion.  相似文献   

3.
4.
5.
6.
7.
8.
Hypoxia-inducible factor (HIF)-α subunits (HIF-1α,HIF-2α and HIF-3α),which play a pivotalrole during the development of hypoxia-induced pulmonary hypertension (HPH),are regulated through post-U'anslational hydroxylation by their three prolyl hydroxylase domain-containing proteins (PHD 1,PHD2 and PHD3).PHDs could also be regulated by HIF.But differential and reciprocal regulation between HIF-α and PHDs duringthe development of HPH remains unclear.To investigate this problem,a rat HPH model was established.Meanpulmonary arterial pressure increased significantly after 7 d of hypoxia.Pulmonary artery remodeling indexand right ventricular hypertrophy became evident after 14 d of hypoxia.HIF-1α and HIF-2α mRNA increasedslightly after 7 d of hypoxia,but HIF-3α increased significantly after 3 d of hypoxia.The protein expressionlevels of all three HIF-α were markedly upregulated after exposure to hypoxia.PHD2 mRNA and proteinexpression levels were upregulated after 3 d of hypoxia;PHD 1 protein declined after 14 d of hypoxia withoutsignificant mRNA changes.PHD3 mRNA and protein were markedly upregulated after 3 d of hypoxia,then themRNA remained at a high level,but the protein declined after 14 d of hypoxia.In hypoxic animals,HIF-lotproteins negatively correlated with PHD2 proteins,whereas HIF-2α and HIF-3α proteins showed negativecorrelations with PHD3 and PHD 1 proteins,respectively.All three HIF-α proteins were positively correlatedwith PHD2 and PHD3 mRNA.In the present study,HIF-α subunits and PHDs showed differential andreciprocal regulation,and this might play a key pathogenesis role in hypoxia-induced pulmonary hypertension.  相似文献   

9.
10.
Hypoxia-inducible factor (HIF) alpha subunits are induced under hypoxic conditions, when limited oxygen supply prevents prolyl hydroxylation-dependent binding of the ubiquitin ligase pVHL and subsequent proteasomal degradation. A short normoxic half-life of HIF-alpha and a very rapid hypoxic protein stabilization are crucial to the cellular adaptation to changing oxygen supply. However, the molecular requirements for the unusually rapid mechanisms of protein synthesis, folding and nuclear translocation are not well understood. We and others previously found that the chaperone heat-shock protein 90 (HSP90) can interact with HIF-1alpha in vitro. Here we show that HSP90 also interacts with HIF-2alpha and HIF-3alpha, suggesting a general involvement of HSP90 in HIF-alpha stabilization. The PAS B domain, common to all three alpha subunits, was required for HSP90 interaction. ARNT competed with HSP90 for binding to the PAS B domain since an excess of either component inhibited the activity of the other. HSP90 as well as the heterocomplex members HSP70 and p23, but not HSP40, were detected in immunoprecipitations of endogenous cellular HIF-1alpha. While HSP90 and HSP70 bound to HIF-1alpha predominantly under normoxic conditions, ARNT bound to HIF-1alpha primarily under hypoxic conditions, suggesting that ARNT displaced HSP90 from HIF-1alpha following nuclear translocation. Hypoxic accumulation of HIF-1alpha was delayed in a novel cell model deficient for HSP90beta as well as after treatment of wild-type cells with the HSP90 inhibitor geldanamycin, suggesting that HSP90 activity is involved in the rapid HIF-1alpha protein induction.  相似文献   

11.
12.
Regulation of gene expression by the hypoxia-inducible factors   总被引:1,自引:0,他引:1  
  相似文献   

13.
14.
15.
Hypoxia-inducible factor 1 (HIF-1) is controlled through stability regulation of its alpha subunit, which is expressed under hypoxia but degraded under normoxia. Degradation of HIF-1alpha requires association of the von Hippel Lindau protein (pVHL) to provoke ubiquitination followed by proteasomal digestion. Besides hypoxia, nitric oxide (NO) stabilizes HIF-1alpha under normoxia but destabilizes the protein under hypoxia. To understand the role of NO under hypoxia we made use of pVHL-deficient renal carcinoma cells (RCC4) that show a high steady state HIF-1alpha expression under normoxia. Exposing RCC4 cells to hypoxia in combination with the NO donor DETA-NO (2,2'-(hydroxynitrosohydrazono) bis-ethanimine), but not hypoxia or DETA-NO alone, decreased HIF-1alpha protein and attenuated HIF-1 transactivation. Mechanistically, we noticed a role of calpain because calpain inhibitors reversed HIF-1alpha degradation. Furthermore, chelating intracellular calcium attenuated HIF-1alpha destruction by hypoxia/DETA-NO, whereas a calcium increase was sufficient to lower the amount of HIF-1alpha even under normoxia. An active role of calpain in lowering HIF-1alpha amount was also evident in pVHL-containing human embryonic kidney cells when the calcium pump inhibitor thapsigargin reduced HIF-1alpha that was stabilized by the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG). We conclude that calcium contributes to HIF-1alpha destruction involving the calpain system.  相似文献   

16.
Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors   总被引:13,自引:0,他引:13  
Hypoxia and induction of hypoxia-inducible factors (HIF-1alpha and HIF-2alpha) is a hallmark of many tumors. Under normal oxygen tension HIF-alpha subunits are rapidly degraded through prolyl hydroxylase dependent interaction with the von Hippel-Lindau (VHL) tumor suppressor protein, a component of E3 ubuiquitin ligase complex. Using microarray analysis of VHL mutated and re-introduced cells, we found that one of the prolyl hydroxylases (PHD3) is coordinately expressed with known HIF target genes, while the other two family members (PHD1 and 2) did not respond to VHL. We further tested the regulation of these genes by HIF-1 and HIF-2 and found that siRNA targeted degradation of HIF-1alpha and HIF-2alpha results in decreased hypoxia-induced PHD3 expression. Ectopic overexpression of HIF-2alpha in two different cell lines provided a much better induction of PHD3 gene than HIF-1alpha. In contrast, we demonstrate that PHD2 is not affected by overexpression or downregulation of HIF-2alpha. However, induction of PHD2 by hypoxia has HIF-1-independent and -dependent components. Short-term hypoxia (4 h) results in induction of PHD2 independent of HIF-1, while PHD2 accumulation by prolonged hypoxia (16 h) was decreased by siRNA-mediated degradation of HIF-1alpha subunit. These data further advance our understanding of the differential role of HIF factors and putative feedback loop in HIF regulation.  相似文献   

17.
18.
The von Hippel-Lindau tumor suppressor protein (pVHL) has emerged as a key factor in cellular responses to oxygen availability, being required for the oxygen-dependent proteolysis of alpha subunits of hypoxia inducible factor-1 (HIF). Mutations in VHL cause a hereditary cancer syndrome associated with dysregulated angiogenesis, and up-regulation of hypoxia inducible genes. Here we investigate the mechanisms underlying these processes and show that extracts from VHL-deficient renal carcinoma cells have a defect in HIF-alpha ubiquitylation activity which is complemented by exogenous pVHL. This defect was specific for HIF-alpha among a range of substrates tested. Furthermore, HIF-alpha subunits were the only pVHL-associated proteasomal substrates identified by comparison of metabolically labeled anti-pVHL immunoprecipitates from proteosomally inhibited cells and normal cells. Analysis of pVHL/HIF-alpha interactions defined short sequences of conserved residues within the internal transactivation domains of HIF-alpha molecules sufficient for recognition by pVHL. In contrast, while full-length pVHL and the p19 variant interact with HIF-alpha, the association was abrogated by further N-terminal and C-terminal truncations. The interaction was also disrupted by tumor-associated mutations in the beta-domain of pVHL and loss of interaction was associated with defective HIF-alpha ubiquitylation and regulation, defining a mechanism by which these mutations generate a constitutively hypoxic pattern of gene expression promoting angiogenesis. The findings indicate that pVHL regulates HIF-alpha proteolysis by acting as the recognition component of a ubiquitin ligase complex, and support a model in which its beta domain interacts with short recognition sequences in HIF-alpha subunits.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号