首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The negative regulation of the biotin biosynthetic (bio) operon in Escherichia coli is mediated by the bifunctional birA gene product, which serves as the bio repressor and biotin-activating enzyme. Nucleotide sequence analysis of 18 mutations in the birA gene was employed to study the DNA-binding and enzymatic functions of the BirA protein. The results indicate that a predicted helix-turn-helix structure, from amino acid (aa) positions 18 to 39 within the 321-aa BirA protein, may be responsible for sequence-specific DNA binding, whereas the temperature-sensitive mutations affecting biotin activation are found in two regions from aa positions 83-119 and 189-235.  相似文献   

2.
The Escherichia coli biotin operon repressor protein (BirA) has been overexpressed at the level of 0.5-1% of the total cellular protein from the plasmid pMBR10. Four lines of evidence demonstrated that authentic BirA protein was produced. First, birA plasmids complemented birA mutants for both the repressor and biotin holoenzyme synthetase activities of BirA. Second, biotin holoenzyme synthase activity was increased in strains containing the overproducing plasmids. Third, deletion of sequences flanking the birA gene did not alter production of the 35-kDa BirA protein, but insertion of oligonucleotide linkers within the birA coding region abolished it. Fourth, the 35-kDa protein copurified with the biotin binding activity normally associated with BirA. The birA protein has been purified to homogeneity in a three-step process involving chromatography on phosphocellulose and hydroxyapatite columns.  相似文献   

3.
A 10-kb region of the Bacillus subtilis genome that contains genes involved in biotin-biosynthesis was cloned and sequenced. DNA sequence analysis indicated that B. subtilis contains homologs of the Escherichia coli and Bacillus sphaericus bioA, bioB, bioD, and bioF genes. These four genes and a homolog of the B. sphaericus bioW gene are arranged in a single operon in the order bioWAFDR and are followed by two additional genes, bioI and orf2. bioI and orf2 show no similarity to any other known biotin biosynthetic genes. The bioI gene encodes a protein with similarity to cytochrome P-450s and was able to complement mutations in either bioC or bioH of E. coli. Mutations in bioI caused B. subtilis to grow poorly in the absence of biotin. The bradytroph phenotype of bioI mutants was overcome by pimelic acid, suggesting that the product of bioI functions at a step prior to pimelic acid synthesis. The B. subtilis bio operon is preceded by a putative vegetative promoter sequence and contains just downstream a region of dyad symmetry with homology to the bio regulatory region of B. sphaericus. Analysis of a bioW-lacZ translational fusion indicated that expression of the biotin operon is regulated by biotin and the B. subtilis birA gene.  相似文献   

4.
5.
The high affinity binding interaction of biotin to avidin or streptavidin has been used widely in biochemistry and molecular biology, often in sensitive protein detection or protein capture applications. However, in vitro chemical techniques for protein biotinylation are not always successful, with some common problems being a lack of reaction specificity, inactivation of amino acid residues critical for protein function and low levels of biotin incorporation. This report describes an improved expression system for the highly specific and quantitative in vivo biotinylation of fusion proteins. A short 'biotinylation peptide', described previously by Schatz, is linked to the N-terminus of Escherichia coli thioredoxin (TrxA) to form a new protein, called BIOTRX. The 'biotinylation peptide' serves as an in vivo substrate mimic for E. coli biotin holoenzyme synthetase (BirA), an enzyme which usually performs highly selective biotinylation of E.coli biotin carboxyl carrier protein (BCCP). A plasmid expression vector carrying the BIOTRX and birA genes arranged as a bacterial operon can be used to obtain high level production of soluble BIOTRX and BirA proteins and, under appropriate culture conditions, BIOTRX protein produced by this system is completely biotinylated. Fusions of BIOTRX to other proteins or peptides, whether these polypeptides are linked to the C-terminus or inserted into the BIOTRX active site loop, are also quantitatively biotinylated. Both types of BIOTRX fusion can be captured efficiently on avidin/streptavidin media for purification purposes or to facilitate interaction assays. We illustrate the utility of the system by measurements of antibody and soluble receptor protein binding to BIOTRX fusions immobilized on streptavidin-conjugated BIAcore chips.  相似文献   

6.
传统的蛋白质生物素标记多采用体外化学修饰法,涉及生物素和蛋白质的活化、透析和纯化等多种处理,该方法步骤繁琐,且对目的蛋白的损失较大。本实验利用原核共表达质粒pCDFDuet-1,将含有6个组氨酸标签的人己糖苷酶D(hexosaminidase D,HexD)的cDNA与生物素受体多肽(biotin acceptor peptide,BAP)DNA进行PCR拼接,连入pCDFDuet-1的多克隆位点1(multiple cloning site1,MCS1);将以大肠杆菌Trans5α基因组为模板克隆得到的生物素连接酶(biotin ligase,BirA)基因连入MCS2,构建重组质粒pCDFDuet-hexD-BAP-birA。初步验证后将该质粒转化至大肠杆菌BL21(DE3)pLysS中,利用0.1 mmol/L的IPTG和80μmol/L的生物素进行诱导表达,采用Ni-NTA亲和层析和超滤对HexD进行纯化,SDS-PAGE检测分子量的大小(60 kDa)和纯度(90%以上)。以anti-HexD和链霉亲和素-HRP为抗体,Western blot检测发现,HexD-BAP表达正确,且被生物素标记;同时以4-MU-O-GalNAc为荧光底物,检测到生物素化标记HexD的糖苷酶活性为3.6 nmol/(min·μg),与未标记HexD的活性(3.06 nmol/(min·μg))相当。结果表明,可以利用BirA及其受体多肽,通过共表达质粒pCDFDuet-1,一步转化、表达和纯化,在大肠杆菌中进行外源蛋白的表达和生物素标记,且不改变目的蛋白的生物活性,可应用于免疫标记、互作蛋白的捕获等生物学研究。  相似文献   

7.
Biotin protein ligase of Escherichia coli, the BirA protein, catalyses the covalent attachment of the biotin prosthetic group to a specific lysine of the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase. BirA also functions to repress the biotin biosynthetic operon and synthesizes its own corepressor, biotinyl-5'-AMP, the catalytic intermediate in the biotinylation reaction. We have previously identified two charge substitution mutants in BCCP, E119K, and E147K that are poorly biotinylated by BirA. Here we used site-directed mutagenesis to investigate residues in BirA that may interact with E119 or E147 in BCCP. None of the complementary charge substitution mutations at selected residues in BirA restored activity to wild-type levels when assayed with our BCCP mutant substrates. However, a BirA variant, in which K277 of the C-terminal domain was substituted with Glu, had significantly higher activity with E119K BCCP than did wild-type BirA. No function has been identified previously for the BirA C-terminal domain, which is distinct from the central domain thought to contain the ATP binding site and is known to contain the biotin binding site. Kinetic analysis of several purified mutant enzymes indicated that a single amino acid substitution within the C-terminal domain (R317E) and located some distance from the presumptive ATP binding site resulted in a 25-fold decrease in the affinity for ATP. Our data indicate that the C-terminal domain of BirA is essential for the catalytic activity of the enzyme and contributes to the interaction with ATP and the protein substrate, the BCCP biotin domain.  相似文献   

8.
9.
A major attraction in using Bacillus subtilis as an expression host for heterologous protein production is its ability to secrete extracellular proteins into the culture medium. To take full advantage of this system, an efficient method for recovering the target protein is crucial. For secretory proteins which cannot be purified by a simple scheme, in vitro biotinylation using biotin ligase (BirA) offers an effective alternative for their purification. The availability of large amounts of quality BirA can be critical for in vitro biotinylation. We report here the engineering and production of an Escherichia coli BirA and its application in the purification of staphylokinase, a fibrin-specific plasminogen activator, from the culture supernatant of Bacillus subtilis via in vitro biotinylation. BirA was tagged with both a chitin-binding domain and a hexahistidine tail to facilitate both its purification and its removal from the biotinylated sample. We show in this paper how, in a unique way, we solved the problem of protein aggregation in the E. coli BirA production system to achieve a yield of soluble functional BirA hitherto unreported in the literature. Application of this novel BirA to protein purification via in vitro biotinylation in general will also be discussed. Biotinylated staphylokinase produced in the study not only can act as an intermediate for easy purification, it can also serve as an important element in the creation of a blood clot targeting and dissolving agent.  相似文献   

10.
To extend the (strept)avidin-biotin technology for affinity purification of proteins, development of reusable biochips and immobilized enzyme bioreactors, selective immobilization of a protein of interest from a crude sample to a protein array without protein purification and many other possible applications, the (strept)avidin-biotin interaction is better when reversible. A gentle enzymatic method to introduce a biotin analog, desthiobiotin, in a site-specific manner to recombinant proteins carrying a biotinylation tag has been developed. The optimal condition for efficient in vitro desthiobiotinylation catalyzed by Escherichia coli biotin ligase (BirA) in 1-4h has been established by systematically varying the substrate concentrations, reaction time, and pH. Real desthiobiotinylation in the absence of any significant biotinylation using this enzymatic method was confirmed by mass spectrometric analysis of the desthiobiotinylated tag. This approach was applied to affinity purify desthiobiotinylated staphylokinase secreted by recombinant Bacillus subtilis to high purity and with good recovery using streptavidin-agarose. The matrix can be regenerated for reuse. This study represents the first successful application of E. coli BirA to incorporate biotin analog to recombinant proteins in a site-specific manner.  相似文献   

11.
12.
Lipoyl-lysine swinging arms are crucial to the reactions catalysed by the 2-oxo acid dehydrogenase multienzyme complexes. A gene encoding a putative lipoate protein ligase (LplA) of Thermoplasma acidophilum was cloned and expressed in Escherichia coli. The recombinant protein, a monomer of molecular mass 29 kDa, was catalytically inactive. Crystal structures in the absence and presence of bound lipoic acid were solved at 2.1 A resolution. The protein was found to fall into the alpha/beta class and to be structurally homologous to the catalytic domains of class II aminoacyl-tRNA synthases and biotin protein ligase, BirA. Lipoic acid in LplA was bound in the same position as biotin in BirA. The structure of the T.acidophilum LplA and limited proteolysis of E.coli LplA together highlighted some key features of the post-translational modification. A loop comprising residues 71-79 in the T.acidophilum ligase is proposed as interacting with the dithiolane ring of lipoic acid and discriminating against the entry of biotin. A second loop comprising residues 179-193 was disordered in the T.acidophilum structure; tryptic cleavage of the corresponding loop in the E.coli LplA under non-denaturing conditions rendered the enzyme catalytically inactive, emphasizing its importance. The putative LplA of T.acidophilum lacks a C-terminal domain found in its counterparts in E.coli (Gram-negative) or Streptococcus pneumoniae (Gram-positive). A gene encoding a protein that appears to have structural homology to the additional domain in the E.coli and S.pneumoniae enzymes was detected alongside the structural gene encoding the putative LplA in the T.acidophilum genome. It is likely that this protein is required to confer activity on the LplA as currently purified, one protein perhaps catalysing the formation of the obligatory lipoyl-AMP intermediate, and the other transferring the lipoyl group from it to the specific lysine residue in the target protein.  相似文献   

13.
B Beall  M Lowe    J Lutkenhaus 《Journal of bacteriology》1988,170(10):4855-4864
The Bacillus subtilis homolog of the Escherichia coli ftsZ gene was isolated by screening a B. subtilis genomic library with anti-E. coli FtsZ antiserum. DNA sequence analysis of a 4-kilobase region revealed three open reading frames. One of these coded for a protein that was about 50% homologous to the E. coli FtsZ protein. The open reading frame just upstream of ftsZ coded for a protein that was 34% homologous to the E. coli FtsA protein. The open reading frames flanking these two B. subtilis genes showed no relationship to those found in E. coli. Expression of the B. subtilis ftsZ and ftsA genes in E. coli was lethal, since neither of these genes could be cloned on plasmid vectors unless promoter sequences were first removed. Cloning the B. subtilis ftsZ gene under the control of the lac promoter resulted in an IPTGs phenotype that could be suppressed by overproduction of E. coli FtsZ. These genes mapped at 135 degrees on the B. subtilis genetic map near previously identified cell division mutations.  相似文献   

14.
The biotin synthases of Bacillus subtilis and Escherichia coli were compared in a physiological reduction system using cell-free extracts and in a artificial reduction system using photo-reduced deazariboflavin. The biotin synthase of B. subtilis was less active than that of E. coli in both reaction systems and showed at least ten-fold less biotin-forming activity than that of E. coli in the artificial reduction system. The physiological reduction system using the biotin synthases and cell-free extracts of B. subtilis and E. coli showed species specificity. The results suggest that the activity of the physiological reduction system of B. subtilisis weaker than that of E. coli. Addition of excess dethiobiotin inhibited biotin formation by growing cells of B. subtilis, but not by E. coli.  相似文献   

15.
Biotin synthetase (BS) catalyses the biotransformation of dethiobiotin (DTB) to biotin. Here we report the cloning, characterization and expression of the gene encoding BS of Bacillus sphaericus. A recombinant plasmid pSB01, containing an 8.2-kb DNA fragment from B. sphaericus, was isolated by phenotypic complementation of an Escherichia coli bioB strain. Nucleotide sequence analysis of this fragment and N-terminal sequence determination of the recombinant protein product revealed that the bioB gene of B. sphaericus consists of a 996-bp open reading frame which is closely associated with at least one other gene. E. coli cells transformed with a bioB expression vector performed efficient bioconversion of DTB to biotin under defined culture conditions. Biotin production from transformed Bacillus subtilis and B. sphaericus recombinant strains was also demonstrated. Comparison of the amino acid sequences of BS from E. coli and B. sphaericus revealed extensive similarity.  相似文献   

16.
In biotin biosynthesis, DAPA aminotransferase encoded by the bioA gene catalyzes the formation of the intermediate 7,8-diaminopelargonic acid (DAPA) from 7-keto-8-aminopelargonic acid (KAPA). DAPA aminotransferases from Escherichia coli, Serratia marcescens, and Bacillus sphaericus use S-adenosylmethionine (SAM) as the amino donor. Our observation that SAM is not an amino donor for B. subtilis DAPA aminotransferase led to a search for an alternative amino donor for this enzyme. Testing of 26 possible amino acids in a cell-free extract assay revealed that only l-lysine was able to dramatically stimulate the in vitro conversion of KAPA to DAPA by the B. subtilis DAPA aminotransferase. The K(m) for lysine and KAPA was estimated to be between 2 and 25 mM, which is significantly higher than the K(m) of purified E. coli BioA for SAM (0.15 mM). This higher requirement for lysine resulted in accumulation of KAPA during fermentation of B. subtilis biotin producing strains. However, this pathway bottleneck could be relieved by either addition of exogenous lysine to the medium or by introduction of lysine deregulated mutations into the production strains.  相似文献   

17.
Summary The biotin (bio) operon in Escherichia coli is negatively regulated by BirA, a bifunctional protein with both repressor and biotin-activating functions. Twenty-five heatresistant revertants of three temperature-sensitive birA alleles (birA 85, bir A 104 and bir A 879) were isolated and categorized into five growth and six repression classes. The revertants appear to increase biotin activation by raising the specific activity of BirA and/or, increasing the number of enzyme molecules. The 19 bir A 85 revertants displayed a broad range of activity for both enzyme and repressor functions, and may represent intragenic second-site suppressor mutations. The bir A 85 revertants included a novel class of bio superrepressor mutations. Repressor titration experiments suggested that many of the bir A 85 revertants increase BirA concentrations above wild-type levels because the repressors were not competed from the chromosomal bio operator by multicopy bio operator plasmids. The majority of the bir A 104 revertants resulted in both wild-type repressor and enzyme activity; they are possibly true revertants in which the amino acid residue altered by the bir A 104 mutation has been substituted by the wild-type or a chemically similar amino acid.  相似文献   

18.
Plasmids carrying the intact Bacillus subtilis dnaA-like gene and two reciprocal hybrids between the B. subtilis and Escherichia coli dnaA genes were constructed. None of the plasmids could transform wild-type E. coli cells unless the cells contained surplus E. coli DnaA protein (DnaAEc). A dnaA (Ts) strain integratively suppressed by the plasmid R1 origin could be transformed by plasmids carrying either the B. subtilis gene (dnaABs) or a hybrid gene containing the amino terminus of the E. coli gene and the carboxyl terminus of the B. subtilis gene (dnaAEc/Bs). In cells with surplus E. coli DnaA protein, expression of the E. coli dnaA gene was derepressed by the B. subtilis DnaA protein and by the hybrid DnaAEc/Bs protein, whereas it was strongly repressed by the reciprocal hybrid protein DnaABs/Ec. The plasmids carrying the different dnaA genes probably all interfere with initiation of chromosome replication in E. coli by decreasing the E. coli DnaA protein concentration to a limiting level. The DnaABs and the DnaAEc/Bs proteins effect this decrease possibly by forming inactive oligomeric proteins, while the DnaABs/Ec protein may decrease dnaAEc gene expression.  相似文献   

19.
The Bacillus subtilis alpha-amylase structural gene (amyE) lacking its own signal peptide coding sequence was joined to the end of the Escherichia coli alkaline phosphatase (phoA) signal peptide coding sequence by using the technique of oligonucleotide-directed site-specific deletion. On induction of the phoA promoter, the B. subtilis alpha-amylase was expressed and almost all the activity was found in the periplasmic space of E. coli. The sequence of the five amino-terminal amino acids of the secreted polypeptide was Glu-Thr-Ala-Asn-Lys-, and thus the fused protein was correctly processed by the E. coli signal peptidase at the end of the phoA signal peptide.  相似文献   

20.
The putative amino acid sequence from the wild-type Bacillus subtilis div+ gene, which complements the temperature-sensitive div-341 mutation, shares a 50% identity with the sequence from Escherichia coli secA (Y. Sadaie, H. Takamatsu, K. Nakamura, and K. Yamane, Gene 98:101-105, 1991). The B. subtilis div-341 mutant accumulated the precursor proteins of alpha-amylase and beta-lactamase at 45 degrees C as in the case of sec mutants of E. coli. The div-341 mutation is a transition mutation causing an amino acid replacement from Pro to Leu at residue 431 of the putative amino acid sequence. The B. subtilis div+ gene was overexpressed in E. coli under the control of the tac promoter, and its product was purified to homogeneity. The Div protein consists of a homodimer of 94-kDa subunits which possesses ATPase activity, and the first 7 amino acids of the putative Div protein were found to be subjected to limited proteolysis in the purified protein. The antiserum against B. subtilis Div weakly cross-reacted with E. coli SecA. On the other hand, B. subtilis Div could not replace E. coli SecA in an E. coli in vitro protein translocation system. The temperature-sensitive growth of the E. coli secA mutant could not be restored by the introduction of B. subtilis div+, which is expressed under the control of the spac-1 promoter, and vice versa. The B. subtilis div+ gene is the B. subtilis counterpart of E. coli secA, and we propose that the div+ gene be referred to as B. subtilis secA, although Div did not function in the protein translocation system of E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号