首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Coral bleaching and mortality are predicted to increase as climate change‐induced thermal‐stress events become more frequent. Although many studies document coral bleaching and mortality patterns, few studies have examined deviations from the expected positive relationships among thermal stress, coral bleaching, and coral mortality. This study examined the response of >30,000 coral colonies at 80 sites in Palau, during a regional thermal‐stress event in 2010. We sought to determine the spatial and taxonomic nature of bleaching and examine whether any habitats were comparatively resistant to thermal stress. Bleaching was most severe in the northwestern lagoon, in accordance with satellite‐derived maximum temperatures and anomalous temperatures above the long‐term averages. Pocillopora populations suffered the most extensive bleaching and the highest mortality. However, in the bays where temperatures were higher than elsewhere, bleaching and mortality were low. The coral‐community composition, constant exposure to high temperatures, and high vertical attenuation of light caused by naturally high suspended particulate matter buffered the corals in bays from the 2010 regional thermal‐stress event. Yet, nearshore reefs are also most vulnerable to land‐use change. Therefore, nearshore reefs should be given high conservation status because they provide refugia for coral populations as the oceans continue to warm.  相似文献   

2.
Continued declines in coral reef health over the past three decades have been punctuated by severe mass coral bleaching‐induced mortality events that have grown in intensity and frequency under climate change. Intensive global research efforts have therefore persistently focused on bleaching phenomena to understand where corals bleach, when and why—resulting in a large—yet still somewhat patchy—knowledge base. Particularly catastrophic bleaching‐induced coral mortality events in the past 5 years have catalyzed calls for a more diverse set of reef management tools, extending far beyond climate mitigation and reef protection, to also include more aggressive interventions. However, the effectiveness of these various tools now rests on rapidly assimilating our knowledge base of coral bleaching into more integrated frameworks. Here, we consider how the past three decades of intensive coral bleaching research has established the basis for complex biological and environmental networks, which together regulate outcomes of bleaching severity. We discuss how we now have enough scaffold for conceptual biological and environmental frameworks underpinning bleaching susceptibility, but that new tools are urgently required to translate this to an operational system informing—and testing—bleaching outcomes. Specifically, adopting network models that can fully describe and predict metabolic functioning of coral holobionts, and how this functioning is regulated by complex doses and interactions among environmental factors. Identifying knowledge gaps limiting operation of such models is the logical step to immediately guide and prioritize future experiments and observations. We are at a time‐critical point where we can implement new capacity to resolve how coral bleaching patterns emerge from complex biological–environmental networks, and so more effectively inform rapidly evolving ecological management and social adaptation frameworks aimed at securing the future of coral reefs.  相似文献   

3.
Coral bleaching is a serious problem threatening the world coral reef systems, triggered by high sea surface temperatures (SST) which are becoming more prevalent as a result of global warming. Seasonal forecasts from coupled ocean–atmosphere models can be used to predict anomalous SST months in advance. In this study, we assess the ability of the Australian Bureau of Meteorology seasonal forecast model (POAMA) to forecast SST anomalies in the Great Barrier Reef, Australia, with particular focus on the major 1998 and 2002 bleaching events. Advance warning of potential bleaching events allows for the implementation of management strategies to minimise reef damage. This study represents the first attempt to apply a dynamical seasonal model to the problem of coral bleaching and predict SST over a reef system for up to 6 months lead-time, a potentially invaluable tool for reef managers. Communicated by Geology Editor Dr Bernhard Riegl  相似文献   

4.
Historically, elevated sea-temperature excursions have been used almost exclusively to explain incidences of natural coral bleaching. Little attention, however, has been paid to instances where environmental conditions appear conducive to bleaching but none has been observed. In this paper we examine contemporaneous records of sea temperature and solar radiation (photosynthetically active radiation; PAR, 400-700 nm) over a 6-year period at a site in the Andaman Sea where regular monitoring of shallow water reef coral communities has been conducted since 1979. Four years (1991, 1995, 1997, and 1998) when anomalous sea temperatures were recorded in May are compared. We suggest a complex interaction of PAR and sea temperature, whereby elevated solar radiation prior to sea-temperature maxima may actually protect corals against subsequent bleaching. In addition, we demonstrate the important role that sea-level anomalies play in modifying the underwater light regime to bring about such conditions.  相似文献   

5.

Tropical Pacific sea surface temperature is projected to rise an additional 2–3 °C by the end of this century, driving an increase in the frequency and intensity of coral bleaching. With significant global coral reef cover already lost due to bleaching-induced mortality, efforts are underway to identify thermally tolerant coral communities that might survive projected warming. Massive, long-lived corals accrete skeletal bands of anomalously high density in response to episodes of thermal stress. These “stress bands” are potentially valuable proxies for thermal tolerance, but to date their application to questions of community bleaching history has been limited. Ecological surveys recorded bleaching of coral communities across the Palau archipelago during the 1998 and 2010 warm events. Between 2011 and 2015, we extracted skeletal cores from living Porites colonies at 10 sites spanning barrier reef and lagoon environments and quantified the proportion of stress bands present in each population during bleaching years. Across Palau, the prevalence of stress bands tracked the severity of thermal stress, with more stress bands occurring in 1998 (degree heating weeks = 13.57 °C-week) than during the less severe 2010 event (degree heating weeks = 4.86 °C-week). Stress band prevalence also varied by reef type, as more corals on the exposed barrier reef formed stress bands than did corals from sheltered lagoon environments. Comparison of Porites stress band prevalence with bleaching survey data revealed a strong correlation between percent community bleaching and the proportion of colonies with stress bands in each year. Conversely, annual calcification rates did not decline consistently during bleaching years nor did annually resolved calcification histories always track interannual variability in temperature. Our data suggest that stress bands in massive corals contain valuable information about spatial and temporal trends in coral reef bleaching and can aid in conservation efforts to identify temperature-tolerant coral reef communities.

  相似文献   

6.
Reports of coral diseases are increasing and may result from human land use and climate change conditions such as increased water temperature, coral bleaching, runoff from land, and changes in the ecology of heavily fished reefs. We examined a stable coral syndrome or a growth anomaly [ Porite growth anomaly (PGA)] (skeletal tissue anomaly, hyperplasia, or 'tumor') that was present in 0–15% of massive Porites colonies in 12 Kenyan reef lagoons. At the level of the calice morphology, this growth anomaly showed larger calices with less distance between calices and some calices with higher than normal numbers of septa, which indicate the influence of microboring organisms. Scanning electron micrographs of affected corals revealed a high abundance of fungal hyphae, a potential microboring pathogenic agent. To test the hypothesis that the PGA covaries with environmental variables, we evaluated its prevalence in relationship to 16 parameters of water quality, temperature, intensity of bleaching, benthic composition, and management at the end of the 2005 warm season. Stepwise regression models found eight environmental variables significantly associated with the frequency of the PGA, and the site's bleaching intensity was the most strongly associated variable. When bleaching intensity was removed from the dataset, the concentration of phosphorus was the one significant and positively associated variable, which suggest that the other significant environmental variables were associated with bleaching and not the growth anomalies. Our hypothetical model of causation is that the patchy loss of symbionts, often associated with bleaching, reduces calcification, increases susceptibility to pathogens, and allows endolithic fungi to perforate the skeleton creating a porous and anomalous growth of the skeleton. Consequently, we suggest that the frequency of skeletal growth anomalies is expected to increase with the frequency of coral bleaching.  相似文献   

7.

Background

Globally, coral bleaching has been responsible for a significant decline in both coral cover and diversity over the past two decades. During the summer of 2010–11, anomalous large-scale ocean warming induced unprecedented levels of coral bleaching accompanied by substantial storminess across more than 12° of latitude and 1200 kilometers of coastline in Western Australia (WA).

Methodology/Principal Findings

Extreme La-Niña conditions caused extensive warming of waters and drove considerable storminess and cyclonic activity across WA from October 2010 to May 2011. Satellite-derived sea surface temperature measurements recorded anomalies of up to 5°C above long-term averages. Benthic surveys quantified the extent of bleaching at 10 locations across four regions from tropical to temperate waters. Bleaching was recorded in all locations across regions and ranged between 17% (±5.5) in the temperate Perth region, to 95% (±3.5) in the Exmouth Gulf of the tropical Ningaloo region. Coincident with high levels of bleaching, three cyclones passed in close proximity to study locations around the time of peak temperatures. Follow-up surveys revealed spatial heterogeneity in coral cover change with four of ten locations recording significant loss of coral cover. Relative decreases ranged between 22%–83.9% of total coral cover, with the greatest losses in the Exmouth Gulf.

Conclusions/Significance

The anomalous thermal stress of 2010–11 induced mass bleaching of corals along central and southern WA coral reefs. Significant coral bleaching was observed at multiple locations across the tropical-temperate divide spanning more than 1200 km of coastline. Resultant spatially patchy loss of coral cover under widespread and high levels of bleaching and cyclonic activity, suggests a degree of resilience for WA coral communities. However, the spatial extent of bleaching casts some doubt over hypotheses suggesting that future impacts to coral reefs under forecast warming regimes may in part be mitigated by southern thermal refugia.  相似文献   

8.
Quantifying the quality of coral bleaching predictions   总被引:2,自引:0,他引:2  
Techniques that utilize sea surface temperature (SST) observations to predict coral reef bleaching are in common use and form the foundation for predicted global coral reef ecosystem demise within this century. Yet, quality assessments of these methods are typically qualitative or anecdotal. Quality is the correspondence of forecasts with observations and has standard quantitative measures. Here a forecast verification method, commonly used in meteorology, is presented and used to measure the quality of the degree heating weeks (DHW) technique as an exploration of insights that can be gleaned from this methodology. DHW values were calculated from NOAA Optimum Interpolation SST version 2 data and compared to a database of bleaching observations from 1990–2007. Quality is expressed with an objective measure, the Peirce Skill Score (PSS). The quality at varying DHW thresholds above which bleaching was projected to occur is calculated. By selecting the thresholds that maximize quality, the predictive technique is objectively optimized. This results in optimal threshold maps, showing reefs more prone and more resistant to bleaching. Optimization increases the quality of DHW as a predictor of bleaching from PSS = 0.55 to PSS = 0.83, in global average, but the optimal PSS and corresponding DHW values vary significantly from location to location. The coral reef research and management community are urged to adopt the simple, but rigorous tools of forecast verification routinely used in other disciplines so that bleaching forecasts can be quantitatively compared and their quality improved.  相似文献   

9.
Hawaiian waters show a trend of increasing temperature over the past several decades that are consistent with observations in other coral reef areas of the world. The first documented large‐scale coral bleaching occurred in the Hawaii region during late summer of 1996, with a second in 2002. The bleaching events in Hawaii were triggered by a prolonged regional positive oceanic sea surface temperature (SST) anomaly greater than 1°C that developed offshore during the time of annual summer temperature maximum. High solar energy input and low winds further elevated inshore water temperature by 1–2°C in reef areas with restricted water circulation (bays, reef flats and lagoons) and in areas where mesoscale eddies often retain water masses close to shore for prolonged periods of time. Data and observations taken during these events illustrate problems in predicting the phenomena of large‐scale bleaching. Forecasts and hind‐casts of these events are based largely on offshore oceanic SST records, which are only a first approximation of inshore reef conditions. The observed oceanic warming trend is the ultimate cause of the increase in the frequency and severity of bleaching events. However, coral reefs occur in shallow inshore areas where conditions are influenced by winds, orographic cloud cover, complex bathymetry, waves and inshore currents. These factors alter local temperature, irradiance, water motion and other physical and biological variables known to influence bleaching.  相似文献   

10.
There is no simple explanation for the unusual increase in coral reef bleaching events that have been occurring on a global scale over the last 2 decades. Recent studies focusing on this problem reveal that mass bleaching events have a strong periodic component, arising every 3-4 yr in step with the El Ni?o climatic phenomenon. To explore this possibility further, we examine a simple oceanographic-ecological model designed to simulate the warm and cool phases of the Pacific Ocean cycle and gauge its effect on local coral reefs. This allows us to identify causes for localized 'hot spots' in the ocean, whose high sea surface temperatures have disastrous consequences for corals. The underlying wave dynamics of the model lead to chaotic oscillations (every 3-4 yr), which help explain the coexistence of both order and irregularity in the dynamics of mass bleaching. The model makes use of a temperature threshold mechanism-a bleaching event is triggered whenever temperature anomalies exceed a critical level. In a variable environment, the threshold mechanism is sensitive to background fluctuations, and their effects are studied by making use of a 'stochastic resonance' formulation. Global climate change and other trends in external background environmental conditions are all shown to strongly influence the distribution of mass coral bleaching events.  相似文献   

11.
Tropical coral reef monitoring relies heavily on in situ diver observations. However, in many reef regions resources are not available to regularly monitor reefs. This lack of historical baseline data makes it difficult to determine how different reefs respond to environmental stressors and what the implications are for management. To test whether coral cores could be used to identify bleaching events retrospectively, three sites in Tobago with pre-existing reef data including water quality and bleaching observations were identified. Colpophyllia natans cores were examined for growth anomalies which occurred during periods of thermal stress. If present, anomalies were compared to in situ, real-time bleaching observations and water quality data. Interestingly, sites with better water quality during the 2005 thermal anomaly were less prone to bleaching. We suggest that by reducing terrestrial run-off (e.g., sediment and nutrients), and therefore improving marine water quality, reef managers could enhance near-shore coral reef resilience during high-temperature events.  相似文献   

12.
 Much recent attention has been given to coral reef bleaching because of its widespread occurrence, damage to reefs, and possible connection to global change. There is still debate about the relationship between temperature and widespread bleaching. We compared coral reef bleaching at La Parguera, Puerto Rico to a 30-y (1966–1995) record of sea surface temperature (SST) at the same location. The last eight years of the La Parguera SST record have all had greater than average maximum temperatures; over the past 30 y maximum summer temperature has increased 0.7 °C. Coral reef bleaching has been particularly frequent since the middle 1980s. The years 1969, 1987, 1990, and 1995 were especially noteworthy for the severity of bleaching in Puerto Rico. Seven different annual temperature indices were devised to determine the extent to which they could predict severe coral bleaching episodes. Three of these, maximum daily SST, days >29.5 °C, and days >30 °C predict correctly the four years with severe bleaching. A log-log linear relationship was found between SST and the number of days in a given year above that SST at which severe coral beaching was observed. However, the intra-annual relationship between temperature and the incidence of bleaching suggests that no one simple predictor of the onset of coral bleaching within a year may be applicable. Accepted: 17 March 1998  相似文献   

13.
We present Computational Fluid Dynamics (CFD) models of the coupled dynamics of water flow, heat transfer and irradiance in and around corals to predict temperatures experienced by corals. These models were validated against controlled laboratory experiments, under constant and transient irradiance, for hemispherical and branching corals. Our CFD models agree very well with experimental studies. A linear relationship between irradiance and coral surface warming was evident in both the simulation and experimental result agreeing with heat transfer theory. However, CFD models for the steady state simulation produced a better fit to the linear relationship than the experimental data, likely due to experimental error in the empirical measurements. The consistency of our modelling results with experimental observations demonstrates the applicability of CFD simulations, such as the models developed here, to coral bleaching studies. A study of the influence of coral skeletal porosity and skeletal bulk density on surface warming was also undertaken, demonstrating boundary layer behaviour, and interstitial flow magnitude and temperature profiles in coral cross sections. Our models compliment recent studies showing systematic changes in these parameters in some coral colonies and have utility in the prediction of coral bleaching.  相似文献   

14.
The dynamic nature of coral communities can make it difficult to judge whether a reef system is resilient to the current disturbance regime. To address this question of resilience for near-shore coral communities of the Great Barrier Reef (Australia) a data set consisting of 350 annual observations of benthic community change was compiled from existing monitoring data. These data spanned the period 1985–2007 and were derived from coral reefs within 20 km of the coast. During years without major disturbance events, cover increase of the Acroporidae was much faster than it was for other coral families; a median of 11% per annum compared to medians of less than 4% for other coral families. Conversely, Acroporidae were more severely affected by cyclones and bleaching events than most other families. A simulation model parameterised with these observations indicated that while recovery rates of hard corals were sufficient to compensate for impacts associated with cyclones and crown-of-thorns starfish, the advent of mass bleaching has lead to a significant change in the composition of the community and a rapid decline in hard coral cover. Furthermore, if bleaching events continue to occur with the same frequency and severity as in the recent past, the model predicts that the cover of Acroporidae will continue to decline. Although significant cover of live coral remains on near-shore reefs, and recovery is observed during inter-disturbance periods, it appears that this system will not be resilient to the recent disturbance regime over the long term. Conservation strategies for coral reefs should focus on both mitigating local factors that act synergistically to increase the susceptibility of Acroporidae to climate change while promoting initiatives that maximise the recovery potential from inevitable disturbances.  相似文献   

15.
Climate change is reshaping biological communities against a background of existing human pressure. Evaluating the impacts of multiple stressors on community dynamics can be particularly challenging in species‐rich ecosystems, such as coral reefs. Here, we investigate whether life‐history strategies and cotolerance to different stressors can predict community responses to fishing and temperature‐driven bleaching using a 20‐year time series of coral assemblages in Kenya. We found that the initial life‐history composition of coral taxa largely determined the impacts of bleaching and coral loss. Prior to the 1998 bleaching event, coral assemblages within no‐take marine reserves were composed of three distinct life histories – competitive, stress‐tolerant and weedy– and exhibited strong declines following bleaching with limited subsequent recovery. In contrast, fished reefs had lower coral cover, fewer genera and were composed of stress‐tolerant and weedy corals that were less affected by bleaching over the long term. Despite these general patterns, we found limited evidence for cotolerance as coral genera and life histories were variable in their sensitivities to fishing and bleaching. Overall, fishing and bleaching have reduced coral diversity and led to altered coral communities of ‘survivor’ species with stress‐tolerant and weedy life histories. Our findings are consistent with expectations that climate change interacting with existing human pressure will result in the loss of coral diversity and critical reef habitat.  相似文献   

16.
Historical temperature variability affects coral response to heat stress   总被引:1,自引:0,他引:1  
Coral bleaching is the breakdown of symbiosis between coral animal hosts and their dinoflagellate algae symbionts in response to environmental stress. On large spatial scales, heat stress is the most common factor causing bleaching, which is predicted to increase in frequency and severity as the climate warms. There is evidence that the temperature threshold at which bleaching occurs varies with local environmental conditions and background climate conditions. We investigated the influence of past temperature variability on coral susceptibility to bleaching, using the natural gradient in peak temperature variability in the Gilbert Islands, Republic of Kiribati. The spatial pattern in skeletal growth rates and partial mortality scars found in massive Porites sp. across the central and northern islands suggests that corals subject to larger year-to-year fluctuations in maximum ocean temperature were more resistant to a 2004 warm-water event. In addition, a subsequent 2009 warm event had a disproportionately larger impact on those corals from the island with lower historical heat stress, as indicated by lower concentrations of triacylglycerol, a lipid utilized for energy, as well as thinner tissue in those corals. This study indicates that coral reefs in locations with more frequent warm events may be more resilient to future warming, and protection measures may be more effective in these regions.  相似文献   

17.
Aim Coral reefs are widely considered to be particularly vulnerable to changes in ocean temperatures, yet we understand little about the broad‐scale spatio‐temporal patterns that may cause coral mortality from bleaching and disease. Our study aimed to characterize these ocean temperature patterns at biologically relevant scales. Location Global, with a focus on coral reefs. Methods We created a 4‐km resolution, 21‐year global ocean temperature anomaly (deviations from long‐term means) database to quantify the spatial and temporal characteristics of temperature anomalies related to both coral bleaching and disease. Then we tested how patterns varied in several key metrics of disturbance severity, including anomaly frequency, magnitude, duration and size. Results Our analyses found both global variation in temperature anomalies and fine‐grained spatial variability in the frequency, duration and magnitude of temperature anomalies. However, we discovered that even during major climatic events with strong spatial signatures, like the El Niño–Southern Oscillation, areas that had high numbers of anomalies varied between years. In addition, we found that 48% of bleaching‐related anomalies and 44% of disease‐related anomalies were less than 50 km2, much smaller than the resolution of most models used to forecast climate changes. Main conclusions The fine‐scale variability in temperature anomalies has several key implications for understanding spatial patterns in coral bleaching‐ and disease‐related anomalies as well as for designing protected areas to conserve coral reefs in a changing climate. Spatial heterogeneity in temperature anomalies suggests that certain reefs could be targeted for protection because they exhibit differences in thermal stress. However, temporal variability in anomalies could complicate efforts to protect reefs, because high anomalies in one year are not necessarily predictive of future patterns of stress. Together, our results suggest that temperature anomalies related to coral bleaching and disease are likely to be highly heterogeneous and could produce more localized impacts of climate change.  相似文献   

18.
Thermal stress and coral cover as drivers of coral disease outbreaks   总被引:5,自引:0,他引:5  
Very little is known about how environmental changes such as increasing temperature affect disease dynamics in the ocean, especially at large spatial scales. We asked whether the frequency of warm temperature anomalies is positively related to the frequency of coral disease across 1,500 km of Australia's Great Barrier Reef. We used a new high-resolution satellite dataset of ocean temperature and 6 y of coral disease and coral cover data from annual surveys of 48 reefs to answer this question. We found a highly significant relationship between the frequencies of warm temperature anomalies and of white syndrome, an emergent disease, or potentially, a group of diseases, of Pacific reef-building corals. The effect of temperature was highly dependent on coral cover because white syndrome outbreaks followed warm years, but only on high (>50%) cover reefs, suggesting an important role of host density as a threshold for outbreaks. Our results indicate that the frequency of temperature anomalies, which is predicted to increase in most tropical oceans, can increase the susceptibility of corals to disease, leading to outbreaks where corals are abundant.  相似文献   

19.
Large-scale coral bleaching was first observed in 1979 and has occurred throughout virtually all of the tropics since that time. Severe bleaching may result in the loss of live coral and in a decline of the integrity of the impacted coral reef ecosystem. Despite the extensive scientific research and increased public awareness of coral bleaching, uncertainties remain about the past and future of large-scale coral bleaching. In order to reduce these uncertainties and place large-scale coral bleaching in the longer-term climatological context, specific criteria and methods for using historical sea surface temperature (SST) data to examine coral bleaching-related thermal conditions are proposed by analyzing three, 132 year SST reconstructions: ERSST, HadISST1, and GISST2.3b. These methodologies are applied to case studies at Discovery Bay, Jamaica (77.27°W, 18.45°N), Sombrero Reef, Florida, USA (81.11°W, 24.63°N), Academy Bay, Galápagos, Ecuador (90.31°W, 0.74°S), Pearl and Hermes Reef, Northwest Hawaiian Islands, USA (175.83°W, 27.83°N), Midway Island, Northwest Hawaiian Islands, USA (177.37°W, 28.25°N), Davies Reef, Australia (147.68°E, 18.83°S), and North Male Atoll, Maldives (73.35°E, 4.70°N). The results of this study show that (1) The historical SST data provide a useful long-term record of thermal conditions in reef ecosystems, giving important insight into the thermal history of coral reefs and (2) While coral bleaching and anomalously warm SSTs have occurred over much of the world in recent decades, case studies in the Caribbean, Northwest Hawaiian Islands, and parts of other regions such as the Great Barrier Reef exhibited SST conditions and cumulative thermal stress prior to 1979 that were comparable to those conditions observed during the strong, frequent coral bleaching events since 1979. This climatological context and knowledge of past environmental conditions in reef ecosystems may foster a better understanding of how coral reefs will respond in future, ocean warming scenarios.  相似文献   

20.
Coral reefs are increasingly exposed to elevated temperatures that can cause coral bleaching and high levels of mortality of corals and associated organisms. The temperature threshold for coral bleaching depends on the acclimation and adaptation of corals to the local maximum temperature regime. However, because of larval dispersal, coral populations can receive larvae from corals that are adapted to very different temperature regimes. We combine an offline particle tracking routine with output from a high‐resolution physical oceanographic model to investigate whether connectivity of coral larvae between reefs of different thermal regimes could alter the thermal stress threshold of corals. Our results suggest that larval transport between reefs of widely varying temperatures is likely in the Coral Triangle and that accounting for this connectivity may be important in bleaching predictions. This has important implications in conservation planning, because connectivity may allow some reefs to have an inherited heat tolerance that is higher or lower than predicted based on local conditions alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号