首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Studying the mechanisms that enable coral populations to inhabit spatially varying thermal environments can help evaluate how they will respond in time to the effects of global climate change and elucidate the evolutionary forces that enable or constrain adaptation. Inshore reefs in the Florida Keys experience higher temperatures than offshore reefs for prolonged periods during the summer. We conducted a common garden experiment with heat stress as our selective agent to test for local thermal adaptation in corals from inshore and offshore reefs. We show that inshore corals are more tolerant of a 6‐week temperature stress than offshore corals. Compared with inshore corals, offshore corals in the 31 °C treatment showed significantly elevated bleaching levels concomitant with a tendency towards reduced growth. In addition, dinoflagellate symbionts (Symbiodinium sp.) of offshore corals exhibited reduced photosynthetic efficiency. We did not detect differences in the frequencies of major (>5%) haplotypes comprising Symbiodinium communities hosted by inshore and offshore corals, nor did we observe frequency shifts (‘shuffling’) in response to thermal stress. Instead, coral host populations showed significant genetic divergence between inshore and offshore reefs, suggesting that in Porites astreoides, the coral host might play a prominent role in holobiont thermotolerance. Our results demonstrate that coral populations inhabiting reefs <10‐km apart can exhibit substantial differences in their physiological response to thermal stress, which could impact their population dynamics under climate change.  相似文献   

2.
 Much recent attention has been given to coral reef bleaching because of its widespread occurrence, damage to reefs, and possible connection to global change. There is still debate about the relationship between temperature and widespread bleaching. We compared coral reef bleaching at La Parguera, Puerto Rico to a 30-y (1966–1995) record of sea surface temperature (SST) at the same location. The last eight years of the La Parguera SST record have all had greater than average maximum temperatures; over the past 30 y maximum summer temperature has increased 0.7 °C. Coral reef bleaching has been particularly frequent since the middle 1980s. The years 1969, 1987, 1990, and 1995 were especially noteworthy for the severity of bleaching in Puerto Rico. Seven different annual temperature indices were devised to determine the extent to which they could predict severe coral bleaching episodes. Three of these, maximum daily SST, days >29.5 °C, and days >30 °C predict correctly the four years with severe bleaching. A log-log linear relationship was found between SST and the number of days in a given year above that SST at which severe coral beaching was observed. However, the intra-annual relationship between temperature and the incidence of bleaching suggests that no one simple predictor of the onset of coral bleaching within a year may be applicable. Accepted: 17 March 1998  相似文献   

3.
Hydrodynamics and water-column properties were investigated off west-central Guam from July 2007 through January 2008. Rapid fluctuations, on time scales of 10s of min, in currents, temperature, salinity, and acoustic backscatter were observed to occur on sub-diurnal frequencies along more than 2 km of the fore reef but not at the reef crest. During periods characterized by higher sea-surface temperatures (SSTs), weaker wind forcing, smaller ocean surface waves, and greater thermal stratification, rapid decreases in temperature and concurrent rapid increases in salinity and acoustic backscatter coincided with onshore-directed near-bed currents and offshore-directed near-surface currents. During the study, these cool-water events, on average, lasted 2.3 h and decreased the water temperature 0.57 °C, increased the salinity 0.25 PSU, and were two orders of magnitude more prevalent during the summer season than the winter. During the summer season when the average satellite-derived SST anomaly was +0.63 °C, these cooling events, on average, lowered the temperature 1.14 °C along the fore reef but only 0.11 °C along the reef crest. The rapid shifts appear to be the result of internal tidal bores pumping cooler, more saline, higher-backscatter oceanic water from depths >50 m over cross-shore distances of 100 s of m into the warmer, less saline waters at depths of 20 m and shallower. Such internal bores appear to have the potential to buffer shallow coral reefs from predicted increases in SSTs by bringing cool, offshore water to shallow coral environments. These cooling internal bores may also provide additional benefits to offset stress such as supplying food to thermally stressed corals, reducing stress due to ultraviolet radiation and/or low salinity, and delivering coral larvae from deeper reefs not impacted by surface thermal stress. Thus, the presence of internal bores might be an important factor locally in the resilience of select coral reefs facing increased thermal stress.  相似文献   

4.
The Coral Triangle encompasses an extensive region of coral reefs in the western tropical Pacific with marine resources that support millions of people. As in all other reef regions, coral reefs in the Coral Triangle have been impacted by anomalously high ocean temperature. The vast majority of bleaching observations to date have been associated with the 1998 La Niña phase of ENSO. To understand the significance of ENSO and other climatic oscillations to heat stress in the Coral Triangle, we use a 5‐km resolution Regional Ocean Model System for the Coral Triangle (CT‐ROMS) to study ocean temperature thresholds and variability for the 1960–2007 historical period. Heat‐stress events are more frequent during La Niña events, but occur under all climatic conditions, reflecting an overall warming trend since the 1970s. Mean sea surface temperature (SST) in the region increased an average of ~ 0.1 °C per decade over the time period, but with considerable spatial variability. The spatial patterns of SST and heat stress across the Coral Triangle reflect the complex bathymetry and oceanography. The patterns did not change significantly over time or with shifts in ENSO. Several regions experienced little to no heat stress over the entire period. Of particular interest to marine conservation are regions where there are few records of coral bleaching despite the presence of significant heat stress, such as in the Banda Sea. Although this may be due to under‐reporting of bleaching events, it may also be due to physical factors such as mixing and cloudiness, or biological factors that reduce sensitivity to heat stress.  相似文献   

5.
Large-scale coral bleaching was first observed in 1979 and has occurred throughout virtually all of the tropics since that time. Severe bleaching may result in the loss of live coral and in a decline of the integrity of the impacted coral reef ecosystem. Despite the extensive scientific research and increased public awareness of coral bleaching, uncertainties remain about the past and future of large-scale coral bleaching. In order to reduce these uncertainties and place large-scale coral bleaching in the longer-term climatological context, specific criteria and methods for using historical sea surface temperature (SST) data to examine coral bleaching-related thermal conditions are proposed by analyzing three, 132 year SST reconstructions: ERSST, HadISST1, and GISST2.3b. These methodologies are applied to case studies at Discovery Bay, Jamaica (77.27°W, 18.45°N), Sombrero Reef, Florida, USA (81.11°W, 24.63°N), Academy Bay, Galápagos, Ecuador (90.31°W, 0.74°S), Pearl and Hermes Reef, Northwest Hawaiian Islands, USA (175.83°W, 27.83°N), Midway Island, Northwest Hawaiian Islands, USA (177.37°W, 28.25°N), Davies Reef, Australia (147.68°E, 18.83°S), and North Male Atoll, Maldives (73.35°E, 4.70°N). The results of this study show that (1) The historical SST data provide a useful long-term record of thermal conditions in reef ecosystems, giving important insight into the thermal history of coral reefs and (2) While coral bleaching and anomalously warm SSTs have occurred over much of the world in recent decades, case studies in the Caribbean, Northwest Hawaiian Islands, and parts of other regions such as the Great Barrier Reef exhibited SST conditions and cumulative thermal stress prior to 1979 that were comparable to those conditions observed during the strong, frequent coral bleaching events since 1979. This climatological context and knowledge of past environmental conditions in reef ecosystems may foster a better understanding of how coral reefs will respond in future, ocean warming scenarios.  相似文献   

6.
In 2010, high sea surface temperatures that were recorded in several parts of the world and caused coral bleaching and coral mortality were also recorded in the southwest Atlantic Ocean, between latitudes 0°S and 8°S. This paper reports on coral bleaching and diseases in Rocas Atoll and Fernando de Noronha archipelago and examines their relationship with sea surface temperature (SST) anomalies recorded by PIRATA buoys located at 8°S30°W, 0°S35°W, and 0°S23°W. Adjusted satellite data were used to derive SST climatological means at buoy sites and to derive anomalies at reef sites. The whole region was affected by the elevated temperature anomaly that persisted through 2010, reaching 1.67 °C above average at reef sites and 1.83 °C above average at buoys sites. A significant positive relationship was found between the percentage of coral bleaching that was observed on reef formations and the corresponding HotSpot SST anomaly recorded by both satellite and buoys. These results indicate that the warming observed in the ocean waters was followed by a warming at the reefs. The percentage of bleached corals persisting after the subsidence of the thermal stress, and disease prevalence increased through 2010, after two periods of thermal stress. The in situ temperature anomaly observed during the 2009–2010 El Niño event was equivalent to the anomaly observed during the 1997–1998 El Niño event, explaining similar bleaching intensity. Continued monitoring efforts are necessary to further assess the relationship between bleaching severity and PIRATA SST anomalies and improve the use of this new dataset in future regional bleaching predictions.  相似文献   

7.
An experiment was conducted along the reefs off west Maui, Hawaii, during the summer of 2003 to monitor the spawning of the reef-building coral Montipora capitata and to determine the role of ocean currents in dispersing the larvae from the natal reef. Instruments documented the environmental forcing during the coral spawning season; drifters were deployed on three successive nights following direct observations of coral spawning. Both the timing and relative magnitude of the coral spawning were identifiable in acoustic backscatter data and correlated to plankton tow data. Each drifter track showed that the surface water containing coral eggs and planula larvae were transported rapidly offshore and not locally retained. Wind and current patterns during the previous year and during subsequent coral spawning events later in the summer were similar to those observed during the drifter releases. This suggests that the trajectories observed during the focused experiment are representative of the general pattern of larval dispersal off west Maui. These findings demonstrate the application of acoustic profilers for remotely imaging coral spawning and predicting their initial dispersal patterns.  相似文献   

8.
Elevated sea surface temperature (SST) caused by global warming is one of the major threats to coral reefs. While increased SST has been shown to negatively affect the health of coral reefs by increasing rates of coral bleaching, how changes to atmospheric heating impact SST distributions, modified by local flow environments, has been less understood. This study aimed to simulate future water flow patterns and water surface heating in response to increased air temperature within a coral reef system in Bocas del Toro, Panama, located within the Caribbean Sea. Water flow and SST were modeled using the Delft3D-FLOW© computer simulation package. Locally measured physical parameters, including bathymetry, astronomic tidal forcing, and coral habitat distribution were input into the model and water flow, and SST was simulated over a four-month period under present day, as well as projected warming scenarios in 2020s, 2050s, and 2080s. Changes in SST, and hence the thermal stress to corals, were quantified by degree heating weeks. Results showed that present-day reported bleaching sites were consistent with localized regions of continuous high SST. Regions with highest SST were located within shallow coastal sites adjacent to the mainland or within the interior of the bay, and characterized by low currents with high water retention times. Under projected increases in SSTs, shallow reef areas in low flow regions were found to be hot spots for future bleaching.  相似文献   

9.
Sea temperatures were normal in Bermuda during 1987, when Bermuda escaped the episodes of coral bleaching which were prevalent throughout the Caribbean region. Survey transecs in 1988 on 4–6 m reefs located on the rim margin and on a lagoonal patch reef revealed bleaching only of zoanthids between May and July. Transect and tow surveys in August and September revealed bleaching of several coral species;Millepora alcicornis on rim reefs was the most extensively affected. The frequency of bleaching in this species,Montastrea annularis and perhapsDiploria labyrinthiformis was significantly higher on outer reefs than on inshore reefs. This bleaching period coincided with the longest period of elevated sea temperatures in Bermuda in 38 years (28.9–30.9°C inshore, >28° offshore). By December, when temperatures had returned to normal, bleaching of seleractinians continued, but bleaching ofM. alcicornis on the outer reefs was greatly reduced. Our observations suggest that corals which normally experience wide temperature ranges are less sensitive to thermal stress, and that high-latitude reef corals are sensitive to elevated temperatures which are within the normal thermal range of corals at lower latitudes.  相似文献   

10.
Tropical coral reef monitoring relies heavily on in situ diver observations. However, in many reef regions resources are not available to regularly monitor reefs. This lack of historical baseline data makes it difficult to determine how different reefs respond to environmental stressors and what the implications are for management. To test whether coral cores could be used to identify bleaching events retrospectively, three sites in Tobago with pre-existing reef data including water quality and bleaching observations were identified. Colpophyllia natans cores were examined for growth anomalies which occurred during periods of thermal stress. If present, anomalies were compared to in situ, real-time bleaching observations and water quality data. Interestingly, sites with better water quality during the 2005 thermal anomaly were less prone to bleaching. We suggest that by reducing terrestrial run-off (e.g., sediment and nutrients), and therefore improving marine water quality, reef managers could enhance near-shore coral reef resilience during high-temperature events.  相似文献   

11.
As the Earth's temperature continues to rise, coral bleaching events become more frequent. Some of the most affected reef ecosystems are located in poorly monitored waters, and thus, the extent of the damage is unknown. We propose the use of marine heatwaves (MHWs) as a new approach for detecting coral reef zones susceptible to bleaching, using the Red Sea as a model system. Red Sea corals are exceptionally heat‐resistant, yet bleaching events have increased in frequency. By applying a strict definition of MHWs on >30 year satellite‐derived sea surface temperature observations (1985–2015), we provide an atlas of MHW hotspots over the Red Sea coral reef zones, which includes all MHWs that caused major coral bleaching. We found that: (a) if tuned to a specific set of conditions, MHWs identify all areas where coral bleaching has previously been reported; (b) those conditions extended farther and occurred more often than bleaching was reported; and (c) an emergent pattern of extreme warming events is evident in the northern Red Sea (since 1998), a region until now thought to be a thermal refuge for corals. We argue that bleaching in the Red Sea may be vastly underrepresented. Additionally, although northern Red Sea corals exhibit remarkably high thermal resistance, the rapidly rising incidence of MHWs of high intensity indicates this region may not remain a thermal refuge much longer. As our regionally tuned MHW algorithm was capable of isolating all extreme warming events that have led to documented coral bleaching in the Red Sea, we propose that this approach could be used to reveal bleaching‐prone regions in other data‐limited tropical regions. It may thus prove a highly valuable tool for policymakers to optimize the sustainable management of coastal economic zones.  相似文献   

12.
The biogenic structures of stationary organisms can be effective recorders of environmental fluctuations. These proxy records of environmental change are preserved as geochemical signals in the carbonate skeletons of scleractinian corals and are useful for reconstructions of temporal and spatial fluctuations in the physical and chemical environments of coral reef ecosystems, including The Great Barrier Reef (GBR). We compared multi-year monitoring of water temperature and dissolved elements with analyses of chemical proxies recorded in Porites coral skeletons to identify the divergent mechanisms driving environmental variation at inshore versus offshore reefs. At inshore reefs, water Ba/Ca increased with the onset of monsoonal rains each year, indicating a dominant control of flooding on inshore ambient chemistry. Inshore multi-decadal records of coral Ba/Ca were also highly periodic in response to flood-driven pulses of terrigenous material. In contrast, an offshore reef at the edge of the continental shelf was subject to annual upwelling of waters that were presumed to be richer in Ba during summer months. Regular pulses of deep cold water were delivered to the reef as indicated by in situ temperature loggers and coral Ba/Ca. Our results indicate that although much of the GBR is subject to periodic environmental fluctuations, the mechanisms driving variation depend on proximity to the coast. Inshore reefs are primarily influenced by variable freshwater delivery and terrigenous erosion of catchments, while offshore reefs are dominated by seasonal and inter-annual variations in oceanographic conditions that influence the propensity for upwelling. The careful choice of sites can help distinguish between the various factors that promote Ba uptake in corals and therefore increase the utility of corals as monitors of spatial and temporal variation in environmental conditions.  相似文献   

13.
Identifying which factors lead to coral bleaching resistance is a priority given the global decline of coral reefs with ocean warming. During the second year of back‐to‐back bleaching events in the Florida Keys in 2014 and 2015, we characterized key environmental and biological factors associated with bleaching resilience in the threatened reef‐building coral Orbicella faveolata. Ten reefs (five inshore, five offshore, 179 corals total) were sampled during bleaching (September 2015) and recovery (May 2016). Corals were genotyped with 2bRAD and profiled for algal symbiont abundance and type. O. faveolata at the inshore sites, despite higher temperatures, demonstrated significantly higher bleaching resistance and better recovery compared to offshore. The thermotolerant Durusdinium trenchii (formerly Symbiondinium trenchii) was the dominant endosymbiont type region‐wide during initial (78.0% of corals sampled) and final (77.2%) sampling; >90% of the nonbleached corals were dominated by D. trenchii. 2bRAD host genotyping found no genetic structure among reefs, but inshore sites showed a high level of clonality. While none of the measured environmental parameters were correlated with bleaching, 71% of variation in bleaching resistance and 73% of variation in the proportion of D. trenchii was attributable to differences between genets, highlighting the leading role of genetics in shaping natural bleaching patterns. Notably, D. trenchii was rarely dominant in O. faveolata from the Florida Keys in previous studies, even during bleaching. The region‐wide high abundance of D. trenchii was likely driven by repeated bleaching associated with the two warmest years on record for the Florida Keys (2014 and 2015). On inshore reefs in the Upper Florida Keys, O. faveolata was most abundant, had the highest bleaching resistance, and contained the most corals dominated by D. trenchii, illustrating a causal link between heat tolerance and ecosystem resilience with global change.  相似文献   

14.
Tropical reefs have been impacted by thermal anomalies caused by global warming that induced coral bleaching and mortality events globally. However, there have only been very few recordings of bleaching within the Red Sea despite covering a latitudinal range of 15° and consequently it has been considered a region that is less sensitive to thermal anomalies. We therefore examined historical patterns of sea surface temperature (SST) and associated anomalies (1982–2012) and compared warming trends with a unique compilation of corresponding coral bleaching records from throughout the region. These data indicated that the northern Red Sea has not experienced mass bleaching despite intensive Degree Heating Weeks (DHW) of >15°C‐weeks. Severe bleaching was restricted to the central and southern Red Sea where DHWs have been more frequent, but far less intense (DHWs <4°C‐weeks). A similar pattern was observed during the 2015–2016 El Niño event during which time corals in the northern Red Sea did not bleach despite high thermal stress (i.e. DHWs >8°C‐weeks), and bleaching was restricted to the central and southern Red Sea despite the lower thermal stress (DHWs < 8°C‐weeks). Heat stress assays carried out in the northern (Hurghada) and central (Thuwal) Red Sea on four key reef‐building species confirmed different regional thermal susceptibility, and that central Red Sea corals are more sensitive to thermal anomalies as compared to those from the north. Together, our data demonstrate that corals in the northern Red Sea have a much higher heat tolerance than their prevailing temperature regime would suggest. In contrast, corals from the central Red Sea are close to their thermal limits, which closely match the maximum annual water temperatures. The northern Red Sea harbours reef‐building corals that live well below their bleaching thresholds and thus we propose that the region represents a thermal refuge of global importance.  相似文献   

15.
Coral bleaching events threaten coral reef habitats globally and cause severe declines of local biodiversity and productivity. Related to high sea surface temperatures (SST), bleaching events are expected to increase as a consequence of future global warming. However, response to climate change is still uncertain as future low‐latitude climatic conditions have no present‐day analogue. Sea surface temperatures during the Eocene epoch were warmer than forecasted changes for the coming century, and distributions of corals during the Eocene may help to inform models forecasting the future of coral reefs. We coupled contemporary and Eocene coral occurrences with information on their respective climatic conditions to model the thermal niche of coral reefs and its potential response to projected climate change. We found that under the RCP8.5 climate change scenario, the global suitability for coral reefs may increase up to 16% by 2100, mostly due to improved suitability of higher latitudes. In contrast, in its current range, coral reef suitability may decrease up to 46% by 2100. Reduction in thermal suitability will be most severe in biodiversity hotspots, especially in the Indo‐Australian Archipelago. Our results suggest that many contemporary hotspots for coral reefs, including those that have been refugia in the past, spatially mismatch with future suitable areas for coral reefs posing challenges to conservation actions under climate change.  相似文献   

16.
In light of rapid environmental change, quantifying the contribution of regional‐ and local‐scale drivers of coral persistence is necessary to characterize fully the resilience of coral reef systems. To assess multiscale responses to thermal perturbation of corals in the Coral Triangle (CT), we developed a spatially explicit metacommunity model with coral–algal competition, including seasonal larval dispersal and external spatiotemporal forcing. We tested coral sensitivity in 2,083 reefs across the CT region and surrounding areas under potential future temperature regimes, with and without interannual climate variability, exploring a range of 0.5–2.0°C overall increase in temperature in the system by 2054. We found that among future projections, reef survival probability and mean percent coral cover over time were largely determined by the presence or absence of interannual sea surface temperature (SST) extremes as well as absolute temperature increase. Overall, reefs that experienced SST time series that were filtered to remove interannual variability had approximately double the chance of survival than reefs subjected to unfiltered SST. By the end of the forecast period, the inclusion of thermal anomalies was equivalent to an increase of at least 0.5°C in SST projections without anomalies. Change in percent coral cover varied widely across the region within temperature scenarios, with some reefs experiencing local extinction while others remaining relatively unchanged. Sink strength and current thermal stress threshold were found to be significant drivers of these patterns, highlighting the importance of processes that underlie larval connectivity and bleaching sensitivity in coral networks.  相似文献   

17.
涠洲岛42年来海面温度变化及其对珊瑚礁的影响   总被引:14,自引:0,他引:14  
涠洲岛位于南海珊瑚礁分布的北缘温度是影响其珊瑚礁生态系统发育的重要因素,对器测温度分析发现,近42年来涠洲岛海面温度(SST)与全球气候变暖呈准同步变化趋势,存在3~4年与7~8年的变化周期,20世纪80年代后期以来,涠洲岛SST上升比较明显。其月平均最高SST的持续上升将使本区珊瑚生长处于一种非常敏感的边缘,加上人类活动(建筑取材、炼油、旅游、捕鱼、养殖等)对涠洲岛珊瑚礁的潜在不利影响,则可能导致珊瑚礁的退化。此外,在系统的野外调查基础上,描述了涠洲岛现代珊瑚礁的分布范围。  相似文献   

18.
卫星遥感珊瑚礁白化概述   总被引:1,自引:0,他引:1  
潘艳丽  唐丹玲 《生态学报》2009,29(9):5076-5080
珊瑚礁白化是由于珊瑚失去体内共生的虫黄藻或者共生的虫黄藻失去体内色素而导致五彩缤纷的珊瑚礁变白的现象,严重的白化可以带来珊瑚礁的死亡.国内外研究表明海水温度升高和珊瑚礁白化关系最为紧密.卫星遥感能够提供大范围、同步与连续的海洋数据,如海水表层温度和海色数据,从而能够及时监测和预测珊瑚礁的白化.基于AVHRR (Advanced Very High Resolution Radiometer),NOAA(National Oceanic and Atmospheric Administration,US)开发了全球监测珊瑚礁白化的方法,热点(HotSpot)和周热度(DHW)两种主要指数.目前,我国珊瑚礁白化现象的监测和研究明显滞后于国际动态,迫切需要发展和利用卫星遥感的方法监测南海珊瑚礁白化状况.  相似文献   

19.
Coral bleaching is a serious problem threatening the world coral reef systems, triggered by high sea surface temperatures (SST) which are becoming more prevalent as a result of global warming. Seasonal forecasts from coupled ocean–atmosphere models can be used to predict anomalous SST months in advance. In this study, we assess the ability of the Australian Bureau of Meteorology seasonal forecast model (POAMA) to forecast SST anomalies in the Great Barrier Reef, Australia, with particular focus on the major 1998 and 2002 bleaching events. Advance warning of potential bleaching events allows for the implementation of management strategies to minimise reef damage. This study represents the first attempt to apply a dynamical seasonal model to the problem of coral bleaching and predict SST over a reef system for up to 6 months lead-time, a potentially invaluable tool for reef managers. Communicated by Geology Editor Dr Bernhard Riegl  相似文献   

20.
Satellite and compiled in situ observations of sea surface temperatures have greatly increased the ability to detect anomalous and persistent warm water and are being widely used to predict climate change, coral bleaching and mortality. A field-based synoptic view of coral bleaching spanning eight countries and ∼35° of latitude in the western Indian Ocean tested the accuracy of synoptic temperature data derived from satellites and shipboard data to detect and predict bleaching during 2005. The ability to predict the degree of bleaching based on degree heating weeks data was moderate, but increased when past temperature anomalies and coral community susceptibility were included. It is estimated that slightly more than half of the bleaching response is due to anomalous warm water and nearly half due to taxa and community level acclimation or adaptation, where these two factors have opposing effects. Cumulative temperature anomalies do identify general areas with bleaching but both large over and underestimates of bleaching intensity were observed. Consequently, field observations are needed to confirm the synoptic satellite predictions for particular reefs, particularly where acclimation and reorganization of the coral community have occurred due to past bleaching events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号