首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we compare the ability of various amino acids to protect small unilamellar vesicles against damage during freeze/thaw. Liposomes were composed of 75% palmitoyloleoyl phosphatidylcholine and 25% phosphatidylserine. Damage to liposomes frozen in liquid nitrogen and thawed at 20 degrees C was assessed by resonance energy transfer. Cryoprotection by numerous amino acids was compared in the presence and absence of 350 mM NaCl. The majority of amino acids with hydrocarbon side chains increased membrane damage during freeze/thaw regardless of the presence of salt. However, amino acids with hydrocarbon side chains of less than three carbons long, e.g. glycine, alanine, and 2-aminobutyric acid, were cryoprotective only in the presence of salt. We suggest that NaCl selectively increases the solubility of such amino acids, allowing them to act as cryoprotectants. In contrast, amino acids with side chains containing charged amine groups were cryoprotective regardless of the presence of salt. The degree of charge on the second amine group is shown to be important for cryoprotection by these molecules. We present evidence that suggests an interaction between the positively charged, second amine group of the amino acid, and the negatively charged phospholipid headgroup.  相似文献   

2.
We explored the unique substrate specificity of the primary S, subsite of human urinary kallikrein (hK1), which accepts both Phe or Arg synthesizing and assaying peptides derived from Phenylacetyl-Phe-Ser-Arg-EDDnp, a previously described inhibitor with analgesic and anti-inflammatory activities [Emim et al., Br. J. Pharmacol. 130 (2000), 1099-1107]. Phe was substituted by amino acids containing larger aliphatic or aromatic side chains as well as by non-natural basic amino acids, which were designed to combine a large hydrophobic and/or aromatic group with a positively-charged group at their side chains. In general, all peptides with basic amino acids represented better inhibitors than those with hydrophobic amino acids. Furthermore, the S1 subsite specificity proved to be much more selective than the mere distinction between Phe and Arg, for minor differences in the side chains of the non-natural amino acids resulted in major differences in the Ki values. Finally, we present a series of peptides that were assayed as competitive inhibitors for human tissue kallikrein that may lead to the development of novel peptides, which are both more potent and selective.  相似文献   

3.
Like all other complex biological systems, proteins exhibit properties not found in free amino acids (i.e., emergent properties). Here, we explore top-down constraints experienced by the residue side chains in proteins compared to amino acids in increasingly complex molecular environments: free amino acids, end-capped amino acids, and the central residue in an alpha-helical nonapeptide. The crystalline structure of the contractile protein profilin Ib and the enzyme trypsin were chosen as objects of study, and submitted to 10 ns molecular dynamics (MD) simulations. The results revealed increased conformational constraints on the side chains when going from the simpler to the more complex compounds. A Shannon entropy (SE) analysis of the conformational behavior of the side chains showed in most cases a progressive and marked decrease in the SE of the chi1 and chi2 dihedral angles. This is equivalent to stating that conformational constraints on the side chain of residues increase their information content and, hence, recognition specificity compared to free amino acids. In other words, the vastly increased information content of a protein relative to its free monomers is embedded not only in the tertiary structure of the backbone, but also in the conformational behavior of the side chains. The postulated implication is that both backbone and side chains, by virtue of being conformationally constrained, contribute to the protein's recognition specificity toward other macromolecules and ligands.  相似文献   

4.
The structures of several variants of staphylococcal nuclease with long flexible unnatural amino acid side chains in the hydrophobic core have been determined by X-ray crystallography. The unnatural amino acids are disulfide moieties between the lone cysteine residue in V23C nuclease and methane, ethane, 1-n-propane, 1-n-butane, 1-n-pentane, and 2-hydroxyethyl thiols. We have examined changes in the core packing of these mutants. Side chains as large as the 1-n-propyl cysteine disulfide can be incorporated without perturbation of the structure. This is due, in part, to cavities present in the wild-type protein. The longest side chains are not well defined, even though they remain buried within the protein interior. These results suggest that the enthalpy-entropy balance that governs the rigidity of protein interiors favors tight packing only weakly. Additionally, the tight packing observed normally in protein interiors may reflect, in part, the limited numbers of rotamers available to the natural amino acids.  相似文献   

5.
To gain insight into the secondary structure of the ion conduction pathway of a voltage-gated K+ channel, we used sulfhydryl-specific reagents of different diameters to probe amino acid side-chain accessibilities in the pore of the channel after cysteine-substitution mutagenesis. We identified five positions at which modified amino acid side chains are accessible from the aqueous lumen of the external channel vestibule. Covalent coupling of the 2-trimethylammonium-thioethyl group to cysteine thiols leads to position-dependent current reduction, suggesting a gradual narrowing of the pore. The fact that the modified side chains of two adjacent amino acids are reactive is not compatible with the ion conduction pathway forming a regular beta-pleated sheet at these positions. The smaller thiol reagent Cd2+ reacts with modified side chains that are also accessible to the larger (2-trimethylammoniumethyl)methanethiosulfate (MTSET) [corrected]. Our results imply that the outer vestibule of a potassium-selective ion channel narrows over a short distance of three amino acids near a position where a regular beta-structure is unlikely.  相似文献   

6.
The modulation of gramicidin A single-channel characteristics by the amino acid side chains was investigated using gramicidin A analogues in which the NH2 terminal valine was chemically replaced by other amino acids. The replacements were chosen such that pairs of analogues would have essentially isosteric side chains of different polarities at position 1 (valine vs. trifluorovaline or hexafluorovaline; norvaline vs. S-methyl-cysteine; and norleucine vs. methionine). Even though the side chains are not in direct contact with the permeating ions, the single-channel conductances for Na+ and Cs+ are markedly affected by the changes in the physico-chemical characteristics of the side chains. The maximum single-channel conductance for Na+ is decreased by as much as 10-fold in channels formed by analogues with polar side chains at position 1 compared with their counterparts with nonpolar side chains, while the Na+ affinity is fairly insensitive to these changes. The relative conductance changes seen with Cs+ were less than those seen with Na+; the ion selectivity of the channels with polar side chains at position 1 was increased. Hybrid channels could form between compounds with a polar side chain at position 1 and either valine gramicidin A or their counterparts with a nonpolar side chain at position 1. The structure of channels formed by the modified gramicidins is thus essentially identical to the structure of channels formed by valine gramicidin A. The polarity of the side chain at position 1 is an important determinant of the permeability characteristics of the gramicidin A channel. We discuss the importance of having structural information when interpreting the functional consequences of site-directed amino acid modifications.  相似文献   

7.
The molecular mechanisms underlying pressure-induced protein denaturation can be analyzed based on the pressure-dependent differences in the apparent volume occupied by amino acids inside the protein and when they are exposed to water in an unfolded conformation. We present here an analysis for the peptide group and the 20 naturally occurring amino acid side chains based on volumetric parameters for the amino acids in the interior of the native state, the micelle-like interior of the pressure-induced denatured state, and the unfolded conformation modeled by N-acetyl amino acid amides. The transfer of peptide groups from the protein interior to water becomes increasingly favorable as pressure increases. Thus, solvation of peptide groups represents a major driving force in pressure-induced protein denaturation. Polar side chains do not appear to exhibit significant pressure-dependent changes in their preference for the protein interior or solvent. The transfer of nonpolar side chains from the protein interior to water becomes more unfavorable as pressure increases. We conclude that a sizeable population of nonpolar side chains remains buried inside a solvent-inaccessible core of the pressure-induced denatured state. At elevated pressures, this core may become packed almost as tightly as the interior of the native state. The presence and partial disappearance of large intraglobular voids is another driving force facilitating pressure-induced denaturation of individual proteins. Our data also have implications for the kinetics of protein folding and shed light on the nature of the folding transition state ensemble.  相似文献   

8.
9.
D J Abraham  A J Leo 《Proteins》1987,2(2):130-152
The fragment method of calculating partition coefficients (P) has been extended to include the common amino acids (AAs). The results indicate that polar and charged side chains influence the hydrophobicity of atoms in the side chain in a predictable manner. Field effects, as evidenced through polar proximity factors and bond factors, need to be considered for accurate estimation of transfer phenomena. The calculated log P and delta G degree ' values of the 20 AAs agree well with the observed values. Pro calculates to be more hydrophilic than the observed log P. Hydrophobicity scales for peptide side chain residues are compared and evaluated in terms of suitability. Calculated pi values for nonpolar side chain residues agree well with the observed values; calculated values for uncharged polar side chain residues deviate by about 0.6 log units except for Gln and Cys; and polar side chain residues with charged side chains calculate as too hydrophilic. Reasons for the differences are explored. We also suggest that tightly bound water to polar moieties in amino acids and peptides may be transferred into the octanol phase during partitioning experiments. A quantitative methodology is presented which characterizes the thermodynamic partitioning of groups and individual atoms in amino acids and proteins.  相似文献   

10.
The solvent-accessible surface area of proteins is important in biological function for many reasons, including protein-protein interactions, protein folding, and catalytic sites. Here we present a chemical technique to oxidize amino acid side chains in a model protein, apomyoglobin, and subsequent elucidation of the effect of solvent accessibility on the sites of oxidation. Under conditions of low protein oxidation (zero to three oxygen atoms added per apomyoglobin molecule), we have positively identified five oxidation sites by liquid chromatography-tandem mass spectrometry and high-resolution Fourier transform mass spectrometry. Our results indicate that all oxidized amino acids, with the exception of methionine, have highly solvent-accessible side chains, but the rate of oxidation may not be dictated solely by solvent accessibility and amino acid identity.  相似文献   

11.
The surface of proteins is covered by side chains of polar amino acids that are imperative for modulating protein functionality through the formation of noncovalent intermolecular interactions. However, despite their tremendous importance, the unique structures of protein side chains require tailored approaches for investigation by nuclear magnetic resonance spectroscopy and so have traditionally been understudied compared with the protein backbone. Here, we review substantial recent methodological advancements within nuclear magnetic resonance spectroscopy to address this issue. Specifically, we consider advancements that provide new insight into methyl-bearing side chains, show the potential of using non-natural amino acids and reveal the actions of charged side chains. Combined, the new methods promise unprecedented characterisations of side chains that will further elucidate protein function.  相似文献   

12.

Settlement of barnacle larvae is believed to be induced by the chemical cues present in their surrounding environment. Here, an investigation was carried out on the effects of sixteen different mono‐amino acids with acidic, basic, uncharged polar and nonpolar side chains, and GABA on larval settlement of the barnacle, Balanus amphitrite. Settlement inducing activity by nine mono‐amino acids, viz. asparagine, glutamine, tyrosine, serine, glycine, tryptophan, leucine, isoleucine and valine (but not phenylalanine) with uncharged polar and nonpolar side chains was observed. Of these, the most active mono‐amino acids were serine, leucine and isoleucine, which were effective at a threshhold of 1.0 × 10‐7 M. On the other hand, aspartic acid, glutamic acid, GABA, and the basic mono‐amino acids lysine, arginine and histidine did not have any inducing effect. These results suggest that uncharged polar and non‐polar end group of the amino acid chain play an important role in inducing the settlement process in cyprids.  相似文献   

13.
Proteins and peptides use their amino acids as medium for electron-transfer reactions that occur either in single-step superexchange or in multistep hopping processes. Whereas the rate of the single-step electron transfer dramatically decreases with the distance, a hopping process is less distance dependent. Electron hopping is possible if amino acids carry oxidizable side chains, like the phenol group in tyrosine. These side chains become intermediate charge carriers. Because of the weak distance dependency of hopping processes, fast electron transfer over very long distances occurs in multistep reactions, as in the enzyme ribonucleotide reductase.  相似文献   

14.
A cyclodextrin glucanotransferase (CGTase) from Bacillus clarkii 7364 converts starch into gamma-cyclodextrin (gamma-CD) with high specificity. Comparison of the deduced amino acid sequence of this CGTase with those of other typical CGTases revealed that several amino acids are deleted or substituted with others at several subsites. Of these amino acids, Ala223 at subsite +2 and Gly255 at subsite +3 in the acceptor site of the enzyme were replaced by several amino acids through site-directed mutagenesis. The replacement of Ala223 by lysine, arginine and histidine strongly enhanced the gamma-CD-forming activity in the neutral pH range. On the other hand, all mutants obtained on replacing Gly255 with the above amino acids showed significant decreases in the gamma-CD-forming activity. Taking into account both the kinetic parameters and pKa values of the side chains of the three basic amino acids, the protonation state of the amino groups in their side chains at subsite +2 seems to enhance the hydrogen bonding interaction between these basic amino acids and the glucose residues of linear oligosaccharides. The enhancement of the interaction may play an important role by helping the substrate reach subsite +1, hence increasing the gamma-CD-forming activity and kcat value.  相似文献   

15.
A novel enzyme with a specific phenylalanine aminopeptidase activity (ApsC) from Aspergillus niger (CBS 120.49) has been characterized. The derived amino acid sequence is not similar to any previously characterized aminopeptidase sequence but does share similarity with some mammalian acyl-peptide hydrolase sequences. ApsC was found to be most active towards phenylalanine beta-naphthylamide (F-beta NA) and phenylalanine para-nitroanilide (F-pNA), but it also displayed activity towards other amino acids with aromatic side chains coupled to beta NA; other amino acids with non-aromatic side chains coupled to either pNA or beta NA were not hydrolyzed or were poorly hydrolyzed. ApsC was not able to hydrolyze N-acetylalanine-pNA, a substrate for acyl-peptide hydrolases.  相似文献   

16.
Previous reports (J. Cui and R. L. Somerville, J. Bacteriol. 175:1777-1784, 1993; J. Yang, H. Camakaris, and A. J. Pittard, J. Bacteriol. 175:6372-6375, 1993) have identified a number of amino acids in the N-terminal domain of the TyrR protein which are critical for activation of gene expression but which play no role in TyrR-mediated repression. These amino acids were clustered in a single region involving positions 2, 3, 5, 7, 9, 10, and 16. Using random and site-directed mutagenesis, we have identified an additional eight key amino acids whose substitution results in significant or total loss of activator function. All of these are located in the N-terminal domain of TyrR. Alanine scanning at these eight new positions and at five of the previously identified positions for which alanine substitutions had not been obtained has identified three amino acids whose side chains are critical for activation, namely, D-9, R-10, and D-103. Glycine at position 37 is also of critical importance. Alanine substitutions at four other positions (C-7, E-16, D-19, and V-93) caused partial but significant loss of activation, indicating that the side chains of these amino acids also play a contributing role in the activation process.  相似文献   

17.
Charged amino acids having ionizable side chains play crucial roles in maintaining the solubility and stability of a protein. These charged amino acids are mostly exposed on protein surface and participate in electrostatic interactions with neighboring charged amino acids as well as with solvent. Therefore, the change in the solvent pH affects the protein stability in most cases. Previously, we reported a GFP variant, GFP14R having 14 surface lysines replaced with arginines, that showed enhanced stability under alkaline pH. Here, we analyzed the factors that contribute to the stability of the GFP14R under alkaline pH quantitatively using molecular dynamics simulations. Protonation state of the charged amino acids of GFP14R and control GFP under neutral pH and alkaline pH were modeled, and molecular dynamics simulations were performed. This comparative analysis revealed that the GFP14R with more arginine frequency on the surface maintained the stability under both pH conditions without much change in their salt-bridge interactions as well as the hydrogen bond interactions with solvent. On the other hand, these interactions were significantly reduced for the control GFP under alkaline pH due to the deprotonated lysine side chains. These results suggest that the advantageous property of arginine over lysine can be considered one of the parameter for the protein stability engineering under alkaline pH conditions.  相似文献   

18.
The structural properties required for the binding of peptide substrates to the Escherichia coli periplasmic protein involved in oligopeptide transport were surveyed by measuring the ability of different peptides to compete for binding in an equilibrium dialysis assay with the tripeptide Ala-Phe-[3H]Gly. The protein specifically bound oligopeptides and failed to bind amino acids or dipeptides. Acetylation of the peptide amino terminus of (Ala)3 severely impaired binding, whereas esterification of the carboxyl terminus significantly reduced but did not completely eliminate binding. Peptides composed of L-amino acids competed more effectively than did peptides containing D-residues or glycine. Experiments with a series of alanyl peptide homologs demonstrated a decrease in competitive ability with increasing chain length beyond tripeptide. Competition studies with tripeptide homologs indicated that a wide variety of amino acyl side chains were tolerated by the periplasmic protein, but side-chain composition did affect binding. Fluorescence emission data suggested that this periplasmic protein possesses more than one substrate-binding site capable of distinguishing peptides on the basis of amino acyl side chains.  相似文献   

19.
  1. The amino acid sensitivity and specificity of the facial taste system of the marine catfish, Arius felis, is characterized electrophysiologically.
  2. The facial taste system of Arius felis responded to all 28 amino acids tested, but was highly sensitive to only a few. In general, acidic amino acids and neutral amino acids with short side chains were more effective than imino, basic and neutral amino acids with long side chains.
  3. A reciprocal cross-adaptation protocol used to characterize the receptor sites identified at least some relatively independent receptor sites for L-arginine, L-histidine, L-proline, L-alanine, glycine, D-alanine and L-glutamate.
  4. Of the 7 amino acids that were indicated to have relatively independent receptor sites, the median electrophysiological threshold for L-alanine, the most stimulatory, and L-proline, the least stimulatory compounds, were 10 nM and 10,000 nM, respectively. The integrated facial taste response did not saturate at test amino acid concentrations up to 10 mM.
  5. The generalized depression in responsiveness to test stimuli observed during amino acid adaptation is proposed to be a result of the co-distribution of sensitivity at the level of single taste cells rather than high cross-reactivity of the respective amino acid receptor sites for the test stimuli.
  相似文献   

20.
本文对固有无序蛋白(IDPs)与其他蛋白质相互作用位点残基特征进行了研究.首先在数据库中选出满足条件的109条IDPs蛋白质链及与其他配体蛋白形成的299个IDPs-蛋白质复合物,然后提取复合物中作为相互作用位点的IDPs-蛋白质残基.这109条IDPs链中共含有50 031个氨基酸残基,其中处于作用位点的残基有4 822个.通过分析发现,20种氨基酸在形成IDPs-蛋白质相互作用位点残基时具有不同的倾向性,根据形成作用位点残基的倾向性,20种氨基酸可分成三大类:倾向型氨基酸(ILE、LEU、ARG、PHE、TYR、MET、TRP)、中间型氨基酸(GLN、GLU、THR、LYS、VAL、ASP、HIS)、非倾向型氨基酸(PRO、SER、GLY、ALA、ASN、CYS).研究结果还进一步表明,不同氨基酸在有序区域与无序区域形成IDPs-蛋白质作用位点残基的倾向性不同.其中,氨基酸TRP、LEU、ILE、CYS在有序和无序区域形成作用位点残基的差异性尤为明显,而氨基酸GLU、PHE、HIS、ALA则基本没有多大差别.对IDPs-蛋白质相互作用位点残基理化特征进行分析发现:疏水性强、侧链净电荷量较少、极性较小、溶剂可及性表面积较大、侧链体积较大、极化率较大的氨基酸比较倾向于形成作用位点残基.主成分分析结果显示,残基的极化率、侧链体积和溶剂可及表面积对作用位点残基影响最大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号